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Solving these equations requires input data such as the species present, the chemical reactions
that can occur, transport coefficients for viscosity, thermal conductivity, molecular diffusion, and
thermal diffusion, the equation of state for the various materials present, and a set of boundary,
source and initial conditions. Given this information, the equations contain in principle all the in-
formation we might want from the largest macroscopic space scales down to the point where the
fluid approximation itself breaks down. Flame, detonation, turbulence phenomena, and all multi-
dimensional effects are included in the solutions of these equations.

The r-al question is then: how in practice do we extract t formation we want? There
are severe restrictions imposed on our mofd1li apebii y the finite computer memory, storage
and processing speeds yailable-WIfleen the best of today's computer hardware. Thus the solu-
tions we aivelifare restricted and depend on both the time and space regimes we can afford to
s and the numerical methods we have available to resolve them.

) An important goal of detailed modelling is to develop a computational model with a well-
understood range of validity. This model can then be used in a predictive role to evaluate the fea-
sibility and validity of new concepts. It can also be used to interpret experimental measurements,
to extend our knowledge to new parameter regimes, and perhaps as an engineering design tool.
Throughout these various applications, the model may serve as an excellent way to test our upder-
standing of the interactions of the individual physical processes which control the behavior of a
reactive flow system.

Modelling combustion systems has its own particular problems because of the strong inter-
action between the energy release from chemical reactions and the dynamics of fluid motion. Re-
lease of chemical energy generates gradients in temperature, pressure, and density. These gradients
in turn influence the transport of mass, momentum, and energy in the system. On a large scale,
the gradients may generate vorticity or affect the diffusion of mass and energy. On a microscopic
scale, they are the origin of the turbulence which drastically affects macroscopic mixing and
burning velocities. Properly describing the strong interplay between chemistry and fluid dynamics
is the real challenge of modelling combustion.

We have purposely concluded this paper on a rather challenging note by discussing turbulence
a major stumbling block in combustion. A thorough review of all of the current approaches to
both reactive and non-reactive turbulence would require at least several volumes. Instead, we have
tried to describe some of the physical processes which lead to and control turbulence in reactive,
incompressible flows. Our point of view is that of modeller looking for an adequate representation
and we outline what features we would like the reprcsentation and associated evolution algorithms
to have.
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DETAILED MODELLING OF COMBUSTION SYSTEMS

I. INTRODUCTION

The purpose of this paper is to acquaint the reader with some of the basic principles of

detailed modelling as applied to combustion systems, Detailed modelling is also knowr' as

numerical simulation. It can be used to describe the chemical and physical evolution of a com-

plex reactive flow system by solving numerically the governing time-dependent conservation

equations for mass, momentum and energy.

Solving these equations requires input data such as the species present, the chemical reac-

tions that can occur, transport coefficients for viscosity, thermal conductivity, molecular

diffusion, and thermal diflusion, the equation of state for the various materials present, and a

set of boundary, source and initial conditions. Given this information, the equations contain in

principle all the information we might want from the lagest macroscopic space scales down to

the point where the fluid approximation itself breaks down. Flame, detonation, turbulence

phenomena, and all multi-dimensional effects are included in the solutions of these equations.

The real question is then: how in practice do we extract the information we want? There

are severe restrictions imposed on our modelling capability by the finite computer memory,

storage, and processing speeds available with even the best of today's computer hardware.

Thus the solutions we arrive at are restricted and depend on both the time and space regimes

we can afford to study and the numerical methods we have available to resolve them.

An important goal of detailed modelling is to develop a computational model with a well-

understood range of validity. This model can then be used in a predictive role to evaluate the

Manuscript subnitted August 19, 1980.
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feasibility and validity of new concepts. It can also be used to interpret experimental measure-

ments, to extend our knowledge to new parameter regimes, and "erhaps as an engineering

design tool. Throughout these various applications, the model may serve as an excellent way to

test our understanding of the interactions of the individual physical processes which control the

behavior of a reactive flow system.

Modelling combustion systems has its own particular problems because of the strong

interaction between the energy released from chemical reactions and the dynamics of fluid

motion. Release of chemical energy generates gradients in temperature, pressure, and density.

These gradients in turn influence the tranport of mass, momentum, and energy in the system.

On a large scale, the gradients may generate vorticity or affect the diffusion of mass and energy.

On a icroscopic scale, zhey are the origin of the turbulence which drastically affects macro-

scopic mixing and burning velocities. Properly describing the strong interplay between chemistry

and fluid dynamics is the real challege of modelling combustion.

Table 1.1 lists some of the major chemical and physical processes which might need to be

considered for an accurate description of a complicated combustion system. MLIlti-phase

processes such as surface catalysis and soot formation can be important even when we are pri-

marily interested in gas phase combustion. For most interesting systems, the basic chemical

reaction scheme, the individual chemical rates, the optical opacities, or the effects of surface

reactions are not well known. Thus the first problem ,hat mus, be solved is modelling the con-

trolling fundamental processes separately.

The paper's discussion of the detailed modelling of combustion systems is confined to the

gas phase: we have omitted heterogeneous effects and radiation transport. Section ii is devoted

to defining the problem we wish to solve, describing the types of time, spae, physical and

geometric complexity which models must handle, and then illustrating these with c,imples

12
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Section III provides an introduction to some of the basic features of finite difference solu-

tions of the individual terms in the conservation equations. The various types of terms are

classified and simple solution algorithms are derived. This section provides the background

necessary for understanding the specific numerical techniques discussed in Sections IV, V, and

VI, which deal with solving the more complicated terms representing the chemical reactions,

hydrodynamics, and diffusive transport processes occurring in combustion systems. Section VII

deals with techniques for coupling the solutions of the equations representing these processes.

Sections VII and IX, which summarize some of the results of detailed modelling of gas

phase combustion calculations, are far from comprehensive. The goal is to give the reader an

f idea of what kind of work has been done to date and how these models may be used. We

emphasize that we have not dealt with phenomenological models, but rather with models that

will guide our intuition and which, together with experiments and analytic theory, will give us

the material upon which phenomenological models can be based.

We have purposely concluded this paper on a rather challenging note by discussing tur-

bulence, a mrjor stumbling block in combustion. A thorough review of all of the current

approaches to both reactive and non-reactvt. '.,rb'.dence would require at least several volumes.

Instead, we have tried to describe some of th. physictal processt,', which lead to and control tur-

bulence in r,=active, incompressible flows. Our point of view is that of modeller looking for an

adequate representation and we outline what features we would like the representation and

associated evolution algorithms to have.

How to Read this Article

The sections of this paper can be grouped into five parts which may be read as units.

(1) This introduction and Section I1 present a statement of the fundamental equations we

wish to solve and the problems inherent in obtaining their solution.

3
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(2) Sections III, V, and VII deal with the origin of the numerical problems we must face.

The first of these, Section III, should be at least skimmed before preceeding to Section V.

(3) Sections IV and VI discuss chemical and diffusive transport equations.

(4) Sections VII and IX are a representative review of the literature which shows how

detailed mndels have been used.

(5) Finally, Section X describes the problems we must deal with if we wish to develop a

model of turbulence to be incorporated in a detailed model of combustion. Section VII, which

discusses the coupling of models for phenomena which vary on widely divergent time and space

scales, is good background material for Section X.

A Glossary is provided which defines those variables used in more than one section of the

paper.

4
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Table 1.1
Fundamental Processes in Combustion

gas phase multi-phase
Chemical kinetics
Hydrodynamics-laminar
Thermal conductivity
Viscosity
Molecular diffusion
Thermochemistry
Hydrodynamics-turbulent
Radiation
Nucleation
Surface effects
Phase transitions

(Evaporation, condensation...)
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II. THE DETAILED MODELLING PROBLEM

II.A. Conservation Equations

The basic equations which a detailed reactive flow model proposes to solve are the time-

dependent equations for conservation of mass, momentum and energy. These may be written

as [1,21

- -- V p1 (I.1)

j-- V. -. - nj + - Ljnj (11.2)

- - (P) - VP + V 7(Vv+ (Vv)' ) - V([V v]) (11.3)
at 3-

- Ev- V ' Pv- V '.Q (11.4)

where the heat flux, Q, is defined as

Q--XVT+nh, Dr (VV+jk- ) (II5)
J J. k NMj Djk

The p, pv, if and P are the total mass, momentum, energy density, and pressure, respectively

and v is the fluid velocity. The (nj) and (V } are the number density and the diffusion veloci-

ties of the individual chemical species. The quantities 71 and k represent the shear viscosity and

the thermal conductivity of the gas mixture at specified {nj} and temperature, T. The coefficient

of bulk viscosity is assumed to be negligible. The {Qf} and (Lj) refer to chemical production

and loss processes for species j. The last two terms in Eq. (11.5) represent the local change in

energy due to molecular diffusion and chemical reactions which must be added to the fluid

dynamic energy density. The quantities {h) are the temperature dependent enthalpies for each

species and the {Dk) and (D} are the sets of binary and thermal diffusion coefficients, respec-

tively. The superscript "T" in Eq. 111.3 indicates the transpose operation and k8 is Boltzmann's

constant.

Throughout this paper the ideal gas law is assumed so that

6
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P = NkT, (11.6)

where N is the total number density,

N -. I np. (11.7)

J

Quantities are given in cgs *K units. Thus we may write the internal energy per unit volume as

e E nj hj - P - H - P. (11.8)
J

The internal energy is related to the pressure and total energy by

P i 2Lpv- I h0 nj=-E - 1pvl
1 1 2I

where v is the ratio of specific heats, (hoj) is the set of heats of formation at 0°K of the species

j, and E is the total energy minus the total heat of formation.

Combining Eqs. (11.8) and (11.9), we obtain

which may be evaluated from (hi). When it is required, the equation-of-state, Eqs. (11.6) or

(11.8), may be replaced by other forms.

The diffusion velocities (Vj are found by inverting the following matrix equation:

nj nk(Vs '=J.'k2D (V - V ) - (_Vk- V,), (11.11)
AN2D Wk V

where the source terms Sj are defined as [3]

VP IIIkAS (n/N) - (pj/p- n/N) --- - , (D/pA - DIj/p) - (11.12)k N2Dk

Equation (11.10) is also subject to the constraint

J

Quantities such as the chemical rates which appear in the (Q.) and (L), the , A, {Djk)
7
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and (D]), as well as any coefficients which might be added to represent turbulence, are input

submudels. Their values are based on experiments, theoretical calculations, or simply educated

guesses.

Equations (11.1-13) as written encompass both flame and detonation phenomena. The
specific problem modelled is determined by the initial conditions, the boundary conditions, the

set of chemical constituents and their thermophysical and chemical properties. These condi-

tions often determine the choice of solution technique, which is a major theme in the

remainder of this paper.

ll.B. Problems in Modelling Reactive Flows

In the previous section several generic problems associated with the solution of Eqs.

(11.1-12) were described. These problems, which must be overcome in order to accurately

model transient combustion systems, are associated with the

* multiple time scales,

* multiple space scales,

* geometric complexity, and

1 * physical complexity

in the systems to be modeled.

The first class of problems arises as the result of trying to represent phenomena character-

ized by very different time scales. In ordinary flame and detonation problems these scales

range over many orders of magnitude. When phenomena are modelled that have characteristic

times of variation shorter than the timestep one can afford, the equations describing these

phenomena are usually called "stiff." Models of sound waves are stiff with respect to the

timestep one wishes to employ when modelling a flame. The equations describing many chemi-

cal reaction rates are stiff with respect to convection, diffusion, or even sound wave timestep
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criteria. Two distinct modelling approaches, global implicit and time-split asymptotic, have

been developed to help resolve these temporally stiff phenomena in a calculation. The two

approaches are described in Section VII.

The second class of problems involves the huge disparity in space scales occurring in

combustion problems. To model the steep gradients at a flame front, a grid spacing of 10- 3 cm

or smaller might be required. To model convection, grid spacings of I to 10 cm might be ade-

quate. Complex phenomena such as turbulence, which occur on intermediate spatial scales,

present a particular modelling problem. It would be a pipedream to expect a numerical calcula-

tion to faithfully reproduce physical phenomena with scale lengths shorter than a cell size.

Therefore, to calculate realistic profiles of physical variables, a certain cell spacing is required to

obtain a given accuracy. Choosing a method which maximizes accuracy with a minimum

number of grid points is a major concern in detailed modelling.

The third set of obstacles arises because of the geometric complexity associated with real

systems. Most of the detailed models developed to date have been one-dimensional. Thus

they give a very limited picture of how the energy release affects the hydrodynamics. Even

though many processes in a combustion systems can be modelled in one-dimension, there are

others, such as boundary layer growth, or the formation of vortices and separating flows, which

clearly require at least two-dimensional hydrodynamics. Real combustion systems are at least

two-dimensional, with unusual boundary conditions and internal sources and sinks. However,

even with sixth generation parallel processing computers available, what can be achieved with

two-dimensional detailed models is still limited by computer time and storage requirements.

Currently, one-dimensional models can be best used to look in detail at the coupling of a

very large number of species interactions in a geometry that is an approximation to reality.

Processes such as radiation transport, turbulence, or the effects of material heterogeneity can be

included either as empirically or theoretically derived submodels. Two- and three-dimensional

models are bcst used to study either flow properties or other macroscopic structures. In these

9
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latter models, the chemical reaction scheme is usually quite idealized or parameterized.

The final set of obstacles to detailed modelling concerns physical complexity. Combustion

systems usually have many irteracting species. These are represented by sets of many coupled

equations which must be solved simultaneously. Complicated ordinary differential equations

describing the chemical reactions or large matrices describing the molecular diffusion process

are costly and increase calculation time orders of magnitude over idealized or empirical models.

Table 1.1, which lists the fundamental processes occurring in combustion, shows that even in

what might appear to be a gas phase problem the reactive flow problem is subject to the effects

of heterogeneity. Before a model of a whole combustion system can be assembled, each indivi-

dual process must be separately understood and modelled. These submodels are either incor-

porated into the larger detailed model directly or, if the time and space scales are too disparate,

must be incorporated phenomenologically. For example, diffusion and thermal conductivity

between a wall and the reacting gas can be studied separately and then incorporated directly into

a detailed combustion model. Turbulence, however, can be modelled on its own space scales

only in idealized cases. These more fundamental models must be used to develop phenomeno-

logical models for use in the macroscopic detailed model. Resolution and computational cost

prevent incorporating the detailed turbulence model directly.

Often there are cases where the submodels are poorly known or misunderstood, which

might occur for chemical rates, thermochemical data, or transport coefficients. A typical exam-

ple is shown in Fig. 11.1, which shows the rate at 300°K for the reaction HO+0 3 - H0 2 +0 2

as a function of the year of the measurement. We note with amusement and chagrin that if we

were modelling a kinetics scheme which incorporated this reaction before 1970, the rate would

be uncertain by five orders of magnitude! Similar tales of woe also exist for thermochemical

data. One use of modelling is to test the importance of specific chemical rates, and examples of

this type of application are given in Sections IV and IX.

10
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II.C. Introduction to the Gedanken Flame Experiment

In order to illustrate how the cost of a computation grows when the requirements needed

to model systems characterized by large temporal and spatial disparities are met, we have

chosen t- analyze a gedanken flame experiment. This analysis is concluded at the end of Sec-

tion VII. There it is shown how the application of various numerical algorithms introduced in

the coming sections may be used to reduce this calculation to a tractable computational prob-

lem.

Consider a closed tube one meter long which contains a combustible gas mixture. We

wish to calculate how the physical properties such as temperature, species densities, and posi-

tion of the flame front change after the mixture is ignited at one end. The burning gas can be

described, we assume, by a chemical kinetics reaction rate scheme which involves some tens of

species and hundreds of chemical rates. For now we will assume one-dimensional propagation

along the tube. Boui-.dary layer formation and turbulence will be ignored. We further assume

that the flame front moves at an average velocity of 100 cm/sec.

Table 11.1 summarizes the pertiment time and space scales in this problem. If we assume

that the speed of sound is 101 cm/sec, a timestep of about 10- 9 sec would be required to

resolv the motion of sound waves bouncing across the chamber. Chemical time-steps, as

mentioned above, are about 10-6 sec. This number may be reduced drastically if the reaction
rates or density changes are very fit. It takes a sound wave about 1 0- 3 Seconds to cross the I

meter system and it takes the flame front about one second to cross. We further assume that

the flame zone is about 10-2 cm wide and that it takes grid spacings of 10-1 cm to res(,Ive the

steep giadients in density and temperature. In those portions of the tube on either side of the

flame front, we assume that 1 cm spacings are adequate.

To estimate the computational expense of this calculation, we use 10- 3 seconds of com-

puter time as a reasonable estimate of the time it takes to integrate each grid point for one

timestep (a single point-step). Ihis estimate includes a solution of all of the chemical and

! " i
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hydrodynamic equations and is based on a detailed model of a hydrogen-oxygen flame problem.

Figure 11.2 shows the information in Table 11.1 cast into a graph of space versus time. Since

the scales are logarithmic, a calculation of the number of point-steps and then of the needed

computer time requires exponentiation. Thus it appears that 3000 years of computer time is

required tc calculate the 101 point-steps involved in representing the finest resolved space and

time scales!

Of course this is unacceptable. Ideally such a simple calculation should be done in 100

seconds, as indicated by the smaller rectangle in Fig. 11.2. We need numerical algorithms which

have fine resolution in time and space only where it is required. Furthermore, these algorithms

should be optimized to take advantage of what is known about the physics and chemistry of the

problem. Sections III, IV, V, and VII present some of the background necessary to understand

the principles of numerical simulation.

12
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Table II.1

Important Scales in Gedanken Flame Experiment

Timescales Spacescales

At sec Ax cm

•Sound Speed 10- 9  Flame Resolution 10- 3

(Courant Limit)

Chemistry Reactions 10-6 Flame Zone 10-2

Sound Transit Time 10- 3  Diffusion Scale 10'-

Flame Transit Time I Convective Scales 10

System Size 100

I Vf - 100 cm/sec

13
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III. SOME GENERAL NUMERICAL CONSIDERATIONS

This section discusses generally the major problems encountered in solving numerically

the different types of terms occurring in Eqs. (II.1)-(II.13). Sections IV through VII present

ways to solve equations containing these terms when they are applied specifically to combustion

systems. Primarily finite difference techniques are considered. Other methods, such as finite

elements, spectral methods or characteristic methods for solution of continuity equations (Sec-

tion V) are mentioned briefly, but they have not yet been used to solve the full set of coupled

reactive flow equations.

Since the set of reactive flow equations presented at the beginning of Section II is coupled

and nonlinear, it is impossible to give a priori a comprehensive analysis of numerical accuracy

and stability. For any particular problem, however, these equations may contain the four gen-

eric types of terms listed in Table 111.1 below. By analyzing these simple, linear, constant

coefficient cases, many of the numerical difficulties which also appear in the coupled nonlinear

problem can be studied. The discussion also illustrates the strengths and weaknesses of the

classical methods for solving the individual terms.

Choosing the best algorithms involves dealing with the nonlinear and non-uniform com-

plexities of a real system. Making these choices under differing conditions is a major theme of

this paper. Section VII discusses coupling the numerical representations of the individual phy-

sical phenomena into a complex overall model.

III.A. Siurce, Sink, Coupling, and Chemical Kinetics Terms

The simple equation

A= yA + B (111.1)

represents a number of local phenomcna such as source terms, B(x, ), sink terms,

-y(x, t) A (x, ), and coupling terms betweet equations. For example, if A is a two component

14
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vector containing a thermal and a vibrational temperature, terms such as (yA + B) express

temperature equilibration at the rate -y. If A were a vector of chemical reactants, Eq. (111.1)

would look like the typical chemical kinetic rate equations.

The discussion of Eq. (I1.l) presented here first derives the analytic solution which

results when y and B are constant. This solution is then compared wi! tnose derived from

explicit, implicit, and asymptotic finite difference techniques. We conclude that the most accu-

rate and cost-effective technique is a combination of an explicit or centered method when the

timestep it requires is affordable (normal equations) and an asymptotic method when the

timestep required for stability is too small for practical applications (stiff equations).

t When y and Bare constint, Eq. (111.1) has the theoretical solution

,A Wt A-,, (0) + e - , (I12

which is correct whether v is positive or negative. Equation (11i.1) can be written in a simple

finite-difference form

AT - IfAT + (1-f) Ar-I] + B (111.3)

where A' A (r8) and 8t is the finite difference timestep. The implicitness parameter, f,

ranges from 0 to I and determines whether the right hand side of Eq. (111.3) is evaluated fully

at the new time V" = 1, full implicit scheme), or at the old time (I'= 0, fully explicit scheme),

or somewhere in between. Equation (11.3) can be solved formally for A'.

A= A(O0 + BE6)0- B (111.4)

where E (ySt) is a finite-difference approximation to the exponential function which may be

written as

E (Y8) I + (1 -)8t (111.5)
_ 1 -f,'y8 t
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The best approximation to the exponential occurs when f 1/2. Then

E(y8t)=1+y8t+ (v8'12 + + ... (111.6)

2 4

which is correct through second order and has a third order error term 12

Figure 111.1 displays these solutions for the case when y < 0 and B = 0. The solutions

go asymptotically to B/y - 0 and start with A (0) = A0 - 1. They represent a stable equilibra-

tion or relaxation which is characteristic of most coupling and chemical kinetic processes. The

three panels show the results of numerical integrations which were performed using timesteps

-1/ 2y, -1/y, and - 2/y. The characteristic relaxation time is (-y)-'. The four solutions in

each panel shown for each choice of timestep are labelled by the letters e, c, i, t, where

I = analytical solution,

e - explicit solution f 0)

c - centered solution f - 1/2), and

= implicit solution (f - 1).

When -y8t is small, all of the numerical solutions are stable. The centered solution,

f = 1/2, is nearly indistinguishable from the exact theoretical solution. The explicit solution is

lower than the exact A () solution by about as much as the implicit solution errs by being too

high. But a!! of the methods replicate the genral behavior of the exact solution and they are

all stable. Unfortunately, ensuring -yBt < 1 everywhere at each timestep can be expensive
A

computationally when the equaJi'ons are "stif!", which means here that - dAd > > 1.
/

When -y8t = 1, the centered solution still approximates the exact solution very well,

although the implicit solution is noiceably less accurate than it was when the timestep was

smaller. The explicit solution displays a rather singular behavior: it goes exactly to zero in one

timestep and then stays there in that asymptotic state. All solutions are stable and still behave

essentially physically.
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As the timestep is increased further to -y,8t = 2 in the third panel, the explicit solution

This situation is the borderline of classical stability for the explicit solution, but, as noted in

panel two, the solution was obviously incorrect even when 81 was a factor of two smaller,

8 - I/. For 8 t larger than -i/y, the explicitly computed value of A may go below zero and

then change sign on each timestep. This occurs because E (y/) becomes negative.

Most integrations of the coupled systems of equations cannot accept the mathenatically

stable but physically bizarre behavior shown in the third panel. Chemical kinetics calculations,

for example, go explosively unstable when species number densities are negative. An impor-

tant guideline in computational physics is that the numerical timestep should always be chosen

at least a factor of two smaller than required by the term with the most stringent stability condi-

tion. Practical stability is about a factor of two more expensive than mathematical stability.

When -y , = 2, the centered solution is still behaving acceptably but has reached the

limiting case before instability occurs in the form of negative values of A. Here we also see

that the implicit .,olution is behaving physically and stably. This guaranteed stability is the lure

of the implicit approach. Unfortunately the error in the implicit solution, relative to the rapidly

decaying theoretical cuive (unlabelled in panel 3), has grown over that in the previous two

panels. This pot--dially large error in the relaxation rate of stiff equations is the hidden sting.

Thus we note that th., practi&a. timestep stability condition for an explicit method is also the

effective accuracy condition for the corresponding implicit method.

There are many situations where tMe damping nature of an implicit algorithm will make

any large relative errors progre,,sively less important, but there are also physically unstable

situations where the errors are important. Thus there has been a concentrated effort to develop

other methods specifically desined to treat -),8t >> 1 integ. otions. These are asymptotic

approaches in which convergence is guaranteed only for (yt) large, whereas the methods

above are based on a Taylor-series expansion which converges when 6/8) is small

17
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To derive an asymptotic solution to Eq. (111.1), the right hand side is set equal to zero and

then dA/dt is successively approximated using earlier asymptotic solutions. For example, to

lowest order

dA" ))= - B&z) + --d(i (I1I.7)

yields A: -B(r)/y(). The time derivative of A can be approximated using this lowest

order solution. The time dependence of y and B are now included because the asymptotic

analysis must take into account the external and the non-linear coupling which represent

multiple-timescale facets of the problem.

Since

dA () B (r) B(T- 1) 1
d7 [y(T) Y&-l J/S (III.8)

then to next order,

B(r) B(T- ()1

-B(T) y(T) y(Tl)AT.... (111.9)
,() Y 8t

An expansion like this is adequate only when (8t) is large. When y8t = -2,

A T=-3 B(T) + I B(T-1)
2 y(T) 2 Y(T-l)(

When y t = -1,

AB() -2 B(-1)
S (T) Y(T-1)

When y8 = -1/2,

B(T) B(r- 1)/,17 3 + 2 y(r - 1)

As (yS) becomes small, the value of A' becomes dominated by an improperly computed time

derivative.

18
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Applied to the simple problem of Fig. 111.1, the asymptotic formula gives the final relaxed

state A = 0. Since the explicit and centered formulae are unstable practically for 81 > -1 and
Y

8t > :_.2 respectively, the asymptotic formula should be used whenever 8t exceeds these

values. The maximum error made by using the centered formula for normal equations and the

asymptotic formula for the stiff equations occurs at the switchover value for the timestep.

Using an explicit-asymptotic combination formula, the maximum error is e-1 . A centered-

asymptotic combination has an error of e- 2.

The implicit formula is always stable, so the switchover point could be taken at any value
f-'

of 8t. It is useful to determine where the two formulae, implicit and asymptotic, are most accu-

rate. From Eq. (111.5), the error made in using the implicit formula for one timestep is
II

Implicit Error = -1  eV8,. (111.13)I- 8

The corresponding error using the asymptotic formula is

Asymptotic Error = 011,  (111.14)

since the asymptotic solution is zero. These errors are equal when -y,t - 1.679. For

timetepssmaler tan 8 ~ 1.679timesteps smaller than 81 - , the implicit formula is more accurate. For longer

timesteps, the asymptotic formula is more accurate. The implicit-asymptotic combination for-

mula for worst error is e- 1.679.

Since th worst error of the centered-asymptotic combination is smaller than that of the

implicit or the implicit-asymptotic solution, there really is little reason to use a fully implicit

technique. The asymptotic approximation is most accurate and stable for -y8 > 2 and so

should be considered the algorithm of choice for long timesteps. In Section IV these arguments

are applied to the solution of the coupled ordinary differential equations describing chemical

rate equations. Treating stiff sound waves by an asymptotic slow-flow algorithm is discussed in

Section V.
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III.B. Terms with Spatial Derivatives

The remaining three types of terms in Table II.1 involve spatial as well as temporal

derivatives and hence require the solution of partial differential equations. The discussion will

therefore proceed in terms of Fourier analyses of idealized, constant-coefficient, periodic prob-

lems. Since the individual equations are linear, each allowed harmonic ei4 of the system can

be treated independently. The finite-difference errors are thus analyzed both in terms of phase

errors of translation, sometimes called numerical dispersion, and amplitude errors of harmonics

arising from excessive numerical smoothing or numerical instability.

A third type of error, the Gibbs phenomenon or Gibbs error, arises when even the sim-

plest wave or convective problem is solved numerically on a finite grid [601. This effect is illus-

trated here by the example of a square wave of density p - 1 and width 20 cells on the compu-

tational grid be uniformly translated to the right. The grid has a total of 100 cells and the

boundary conditions are periodic. Suppose further that the square wave is being advanced by

one of the "exponentially accurate" spectral methods [41, so only the Gibbs error remains.

Figure 111.2 shows the numerical resolution obtained for the density step function which

has values from 1.0 to 0,0 when it has travelled to 19.5 cm in a 100 cm periodic system. The

dots are the known density values at the grid points; they are the only information known

from a finite difference solution about the continuous profile. Using the lowest tO Fourier

harmonics, the solid curve is synthesized as the smoothest continuous curve through all the

known values. The Gibbs error arises because the higher harmonics are not included in the

calculation. It appears as undershoots and overshoots which are worse in the vicinity of large

gradients and discontinuities and it becomes apparent as soon as the profile is convected a fr.c-

tion of a cell from its initial location. Fluctuations such as these of 10-15% can lead to

incorrect or unphysical results in the other parts of a detailed calculation.
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III.C. Diffusion Equations and Dissipative Effects

The first example of a partial differential term in the coupled equations is the second term

in Table Ill. 1, a simple diffusion equation

OA (x, ) 02A (x, ) (1II.15)
8x 2

The coefficient v is a positive diffusion coefficient which in this discussion is held constant in

space and time. In analogy with Eq. (Il1.1), a spatially and temporally varying source term in

the form of B(x, t) might be added to the right hand side of Eq. (111.15). For simplicity in the

analysis presented below, this term has not been included.

Then in analogy with Eq. (111.3), Eq. (111.15) can be written in the following simple finite

difference form,

A - A,,- 1

- - 2AT + A" + (1.16)
8t 8x 2

v(,f) [A,..' - 2A7-1 + A,!:']
8x 2

where now subscript i labels the spatial cell. Again, f = 0 gives the usual explicit scheme,

f - 1/2 the most accurate centered scheme, and f - 1 the more stable implicit scheme.

When the spatial variation ell is assumed, where i = -1, the spatial differences in

square brackets can be replaced by the expression f-2AT(k) (I - cosk8x)]. Equation (111.16)

then becomes

7__ -_______(k) 2vf

- (- cosk8x) A (k) (111.17)8t 8x 2

2v(-f) (1-cosk8x) AT-1(k)
8x 2

which can be solved explicitly for AT(k) in terms of A'-I(k). The ratio A (k)/A-I(k) is

called the amplication factor (0i) and is less than unity for realistic diffusion. In terms of the

amplification factor, the general finite difference solution can be written as
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A I MAT  (1 -f) (-cosk8x)AV A-- (III01.18)

+ f (1-cosk8x)

In the time interval 8t, the analytic solution to Eq. (15) decays by an amount

TI(A?/A-I)T.r e - vk 28 , (11.19)

where here .the superscript T designates the theoretical solution. Since the numerical algo-

rithms are best compared in terms of the non-dimensional parameters 8 -- M 1 and k8x, the

result Eq. (111.19) may be rewritten as

I (A x) 2

Ar - e- 2 (111.20)

which is the (1/8 )th root of Eq. (111.19) and expresses the amplification factor per unit time

rather than per timestep. The exponential factor 1/8 is included in the definition of the ampli-

cation factor so that comparisons of various solutions may be made after a given amount of

time even though different length timesteps have been used. The numerical solution indicated

by the superscript N, then becomes

N 1 -8 f (l- cosk8x)

dN 11= 8 (Sf (l-cosk8x) (111.21)

The three panels of Fig. 111.3 show the analytically derived curve for amplication factor as

a function of harmonic wavelength expressed as k8x for various values of 8. The far right of

each panel is the shortest wavelength that can be represented, 2 cells per wavelength. Infinite

wavelengths are at the left. The reflection points of the explicit "E' solution at amplification

factor equal to zero in the 8 = 1.0 panel and of the "E' and centered "C' solution in the 8 = 1.5

panel represent the portion of the spectrum at short wavelengths where the mode amplitude has

changed sign because the timestep is too long. These reflection points are again the limit of

practical, if not mathematical, stability because negative values of positive definite quantities

become possible. For the right hand panel, 8 = 1.5, the short wavelength portion of the spec-
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trum computed using the explicit algorithm is completely unstable: the amplitude is greater

than unity and the sign is wrong. For k8x > -, the centered algorithm is practically,

although not absolutely, unstable. The mode amplitudes of these short wavelengths decrease

rapidly from one timestep to the next, but their sign oscillates.

In all of these comparisons, the implicit algorithm is stable and behaves in a physically

reasonable way at short wavelengths. In the regimes where the other algorithms are also stable,

the implicit algorithm is somewhat less accurate. Furthermore, parabolic diffusion equations

really are not subject to the phase errors of translation as are convection and hyperbolic wave

equations. Therefore short wavelengths, where numerical errors are worst, decay quickly and

the solution becomes smoother as time progresses. All of these considerations indicate that

implicit diffusion algorithms should be used wherever practical. Unfortunately complications

Af such as non-linearity, spatial dependence of diffusion coefficients, and anisotropy often conspire

to make the implicit algorithm expensive and complicated to use. An asymptotic solution of

the diffusion equation is also possible although guaranteeing global conservation may be

difficult. Unfortunately these methods are generally problem dependent and often not easily

generalized.

III.D. Wave-Like Equations

The third type of term in Table 111.1 represents the propagation of waves,

a2A _ v2 02A

where v, represents, for example, the speed of sound in a material. This same physical

phenomenon can also appear as two coupled first-order equations

aA aB 8B 8Av= - vW and - v ax (111.23)

Wave equations have oscillatory solutions which we shall assume vary as

A (x, 1) = AA e"k e- '  (111.24a)
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B(x, ) = Bk e'i e-iba (I1.24b)

in the following analyses. The analytical solution is

-d . vk, (111.25)

but each spatial Fourier harmonic will propagate at a different phase speed in the numerical

finite difference solution. The expressions

Al - A -I' BIT) 2 - B11-1) 2  (1II.26a)
8X

1 -B- 2  vW AA, - A T (1II.26b)
8tW 8x

are an explicit, staggered-leapfrog formulation designed to maintain mode amplitudes as long as

the algorithm is numerically stable. This algorithm is reversible, but reversibility does not

guarantee stability. It does mean that stable waves will propagate undamped although perhaps

at the wrong phase velocity.

Substituting Eqs. (111.24) into Eqs. (111.26) result in the following numerical dispersion

relation

: ,sino t. vw~ft k8 v k~x
sin2 8x sin 2 =E sin - , (111.27)

where here we have let e refer to the coefficient v,8h/8x. This equation is the explicit algo-

rithm in terms of the time integration and clearly approaches the analytic limit in Eq. (111.25)

when the mode under consideration is many computational cells long. As long as IE < 1, we

can always find a real (a for any choice of k8x and thus the solution is stable. When f exceeds

unity, sin 8u/2 > I for modes with k8x/2 near 7r/2. These modes are unstable because a

complex value of o is needed to satisfy the dispersion relation. Here, as earlier, there are prac-

tical reasons for choosing 8 1 roughly a factor of two smaller than this mathematical limit.

Figure IJ.4 displays this explicit dispersion relation for four different values of E. The

mathematical stability boundary for this algorithm is e - I where the theoretical and explicit

dispersion relations agree exactly (line labelled T, E in the upper right hand panel). As E is
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increased above unity (the two lower panels), there is a maximum stable value of k x/2 for

which e sin kfix/2 = 1. For shorter wavelengths, the modes are unstable as indicated by .the

termination of the explicit algorithm dispersion curve. All curves plotted show _ -ha
2E 2c

plotted versus -x. This normalization converts the theoretical dispersion curve to a universal
2'

(straight line exactly as was done previously for the diffusion equations.

grid Figure 111.4 also shows dispersion curves for a reversible implicit algorithm based on a

: grid staggered in space but not in time.

Al7 - AlTI V, BITj) 2 + B4r1/2 -BILI/ 2 -B7j 2 1(1.8st " 2 [ .(111.28)
8t 2 8iX

B41+ 2 - B7) 2  v._w , +A7+ I  i

8t 2 8x '

Again substituting the e ik e - lwt spatial and time dependence gives the following numerical

dispersion relation

tan--- -- e sin k (111.29)
2 2,

for the reversible implicit algorithm. This method is always stable beeause a real w can always

be found regardless of the values of kfx and e. As can be seen in the figure, the implicitly

determined value of w always falls below both the analytic value and the explicit values when

I the latter are stable. The explicit reversible algorithm is always more accurate than the implicit

algorithm as long as the formei is stable.

When e is very large, as in the lower right hand panel, almost all of the waves travel more

than a cell per timestep and hence are unstable when integrated explicitly. The maximum

stable wave number kmax satisfies

kmax 8x/2 le << 1 (111,30)

aid the maximum value which the implicitly determined frequency o can take is

Wmax  r/8.(1.25
25
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Thvs in the case of wave-like phenomena, the stability condition for the explicit method is

again the accuracy condition for the implicit method. Asymptotic treatments are difficult to for-

mulate, although certain kinds of wave-like phenomena can be treated by a WKB approxima-

tion in which the phase changes rapidly but the amplitudes and rates of change of phase do not.

Multiple timescale analyses are also examples of asymptotic formulations which may be

appended to detailed models in the form of subscale phenomenologies.

In the case of diffusion terms, the phases were ignored although considerable attention

was paid to the mode amplitudes. In the case of hyperbolic wave equations, the discussion

focussed on the phases, and the mode amplitudes were held fixed by construction. Since the

modes which are most in error, i.e. the short wavelengths, do not decay in this latter case as

they did in the former, the use of centered implicit algorithms for timesteps much longer than

the explicit stability condition must be undertaken with caution. Of course, when physical

damping is also present, the short wavelengths will decay and are not a problem. Often, how-

ever, the waves are only weakly damped and the short wavelength components propagate,

undamped, at the wrong speed. When it is feasible, such situations are best treated with a

Fourier or spectral method [41 which minimizes phase and amplitude errors.

In any case, no matter which algorithm is used, the Gibbs errors at discontinuities and

sharp gradients cannot be entirely avoided. In the case of a sharply rising front in a wave equa-

tion, the discontinuity breaks up into an expanding sea of ripples. The ever-present problem of

Gibbs errors is discussed further in Section IIL.E and V.A.

III.E. Convective and Continuity Equations

The continuity equation

o(x, i) - ) O(x, I) v (x, '(-- (111.32)
8t ax

combines the headaches of both the diffusion and wave equations because the solution is sensi-

tive to both phase tind amplitude errors. Extensive discussions have been published [5,61 on
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the techniques and problems which arise in the numerical solution of continuity equations.

These are summarized in the paragraphs which follow and are discussed in much more detail in

Section V.

Figure 111.5 summarizes the results obtained using several of the traditional methods for

solving Eq. (II1.2) tor a square wave propagation problem. The grid is uniform and periodic

and the velocity is a constant. The problem posed is the convection of a square wave of density

p = 2.0 on top of a uniform p - 0.5 background. The timestep is taken to be 8t - 0.2 so the

i fluid moves 2/10 of a cell per timestep. Before the first cycle at t - 0, the computed and ana-
lytic solutions are identical. As time progresses the computed solutions, indicated as data

Ipoints, disperse and decay. The top two panels were computed using the common first-order

scheme called one-sided or donor-cell differencing. The diffusion is so large that dispersive

~effects are completely overshadowed. The initially sharp edges of the density profile, which

should propagate as sharp edges, smooth out rapidly until by cycle 800 roughly half the material

has numerically diffused out of the square wave. This has occurred even though the square

wave is quite large and well resolved. In many three-dimensional calculations, a resolution of

20x20x20 is all that can be afforded. Thus the effect of numerical diffusion is even less severe

in the top two panels of Fig. 111.5 than in some practical multi-dimensional donor-cell calcula-

tions.

The second and third set of panels show two square wave calculations performed using

the Lax-Wendroff [71 and Leapfrog [81 algorithms respectively. In these cases the numerical
v8i

diffusion is second-order, whereas it was first order in v81 in the donor cell calculation of the

top panel. Thus the amplitude errors resulting from numerical diffusion are less severe than

dispersion errors when the diffusion is second order in v81. The characteristic ripples are seen

near the top and bottom of discontinuities. Initially they appear at the shortest wavelength and A
look like Gibb's errors. Since the diffusion is most effective on short wavelengths, the scale of

the apparent dispersion becomes longer. In both second-order algorithms, much less of the
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material originally in the square wave at t - 0 has diffused out at t = 160 than was the case

using the first order algorithm. Nevertheless, the pronounced undershoots and overshoots pose

problems for coupled reactive flow simulations and these problems are as serious as those

caused by excess numerical diffusion.

The last two panels show a solution of the same square-wave problem using one of the

Flux-Corrected Transport (FCT) algorithms [9]. Flux. Corrected I ransport is a nonlinear algo-

rithm which combines strong low-order smoothing to remove Gibbs oscillations with much

weaker second-order smoothing needed for numerical stability of the explicit integrations. This

FCT approach is the forerunner of a new family of methods called "monotonic" or "monotone"

algorithms [9,10,11]. More specific and detailed discussions of monotone algorithms and fully

Lagrangian methods which are relatively non-diffusive are given in Section V.
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Table III.1
Types of Terms in the Conservation Equations

QA
yA + B Source, Sink, Coupling, Chemical Kinetics

-A- - 2  Diffusion and Dissapative Effects

02

a 2 A .2-82 Wave-Like Equations

OA 8Av Convective and Continuity Equations

at a
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IV. CHEMICAL KINETICS CALCULATIONS

The coupled, non-linear, ordinary differential equations which describe the chemical

interactions are taken from that part of Eq. (11.2), which represent the production and loss of

reacting species:

- - . 4. . ,(IVj)

where M is the total number of species present. The functional dependences of the terms

Q= Qj({ni(t)) (IV.2)

emphasize the strong coupling between the various species. In general Eq. (IV.1) is composed

of a sum of terms which have the form for Qj,

qi[nkI, q2[nk1[njI, or q3[nk[1n, ,n]1,

and for Lj

-dnjl, 12[niIln ], or 13tlJl[nilnl,

where the q's and I 's are chemical rate constants, their subscripts refer to unimolecular,

bimolecular, and termolecular reactions, and the subscripts j, k, I, and m represent species. A

subst ntial amount of information about reactive systems can be obtained from the solution of

these equations alone. We know, for example, that models of carefully controlled shock tube

and vertical tube reactor experiments need not include any diffusive transport or convective

effects to yield excellent approximations of reality. These types of experiments and the calcula-

tions which describe them provide an excellent way to study complicated chemical kinetic reac-

tion schemes.

The solution of the chemical kinetics equations in a detailed model is usually the most

expensive part of a reactive flow problem. In typical flame or detonation calculations, solution

30



NRL MEMORANDUM REPORT 4371

Ar- of the chemistry equations mty take an order of magnitude longer than the solution of the con-

vective or diffusive transport terms. The computational cost increases further with the number

of species and the dimensionality of the problem. The cost also depends strongly on the form

of the temperature dependence of the chemical reaction rates which comprise {Qj) and {LJ}. If

these forms are exponential and involve fractional powers, they are expensive to evaluate

numerically. In all cases we require efficient, accurate algorithms to solve Eq. (IV.1).

, Some of the numerical methods which have been developed to solve Eq. (IV.1) are

briefly described in this section. Next several examples of detailed models for specific experi-

ments as well as the results of several independent comparative modelling studies are given.

Later in this paper, in Sections VIII and IX, we show examples of how the information in these

equations is used in the solution of the full set of coupled Eq.. (11.1)-(II.12).

IV.A. Solution of Ordinary Differential Equations

Equation (IV.I) is a complicated form of Eq. (111.1). The equation may be stiff when it is

used to represent chemical kinetic systems when there are large differences in the time con-

stants associated with different chemical reactions. Stiffness may occur for different species, in

different locations, at different times or simultaneously throughout the course of an integration.

Regardless of how complex the system, the equations to be solved describe species number

densities which are always positive and usually tend to relax to a stable equilibrium. There are

also a number of physical conservation conditions which are maintained, such as the total

I number of all of the atoms or of a specific type of atom in the system.

Classical methods for solving ordinary differential equations range from the simplest Euler

method to the fairly complex multi-step predictor-corrector Adams-Moulton methods. Many

excellent reviews [e.g., see 12, 13] have been written on these so the details of the heirachy of

successively more sophisticated methods will not be discussed here. All of these methods con-

serve mass to the limits of numerical roundoff errors. However, they are not stable for arbi-
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trary step sizes and thus do not handle stiff equations adequately. Methods are required which

can account for the effects of strong coupling and which are stable.

The Implicit Runge-Kutta [141, Gear [151, and Kregel [161 methods can in principle han-

die the stiffness problem. The first two methods allow the order of accuracy to be selected;

they are conservative; and they are stable for large timesteps. However, they all have several

major computational drawbacks. First, they are global implicit methods of the type described in

more detail in Section VII. Solving them requires the inversion of matrices incorporating ele-

ments of the Jacobian, which can be a costly operation when many species are involved.

Second, such higher-order solutions require storage of information from a previous timestep.

This may produce data storage problems. These two problems complicate the use of these

sophisticated high-order methods when they are used in reactive flow problems. For the solu-

tion of Eq. (IV.1) alone, however, they are often excellent.

Throughout the previous discussion, we have mentioned several criteria that are desirable

in a integration method for ordinary differential equations. To summarize, the method must be

efficient, accurate, conservative, stable and not require storage of large quantities of data from

one time-step to another. Several hybrid techniques [e.g., 17,181 have been developed to

attempt to reconcile these often conflicting demands.

As an example of such a hybrid technique, we consider the selected asymptotic integration

method [171, which determines which equations satisfy an appropriately chosen stiffness cri-

terion. The non-stiff equ!wions are solved by an explicit Euler method, while a very stable

asymptotic method is applied to the stiff equations. In a simplified form, the solution of Eqs.

IV.1 may be written for normal equations as

n(t +86 = n() +t aQ(t) - 7 W (IV.5)

and for stiff equations as

n(t + 8) - n(t) - Q(I) + Q(t +8,_ n(t) + n't +8s) (iv.6)
81 2 7'(t) + T(t + 81,'

32



NRL MEMORANDUM REPORT 4371

where n (t + 8t) is solved for explicitly and where

T (IV.7)
L

Figure (IV.1) shows qualitatively the types of phase errors which this type of solution can intro-

duce. As described in Section 111, an asymptotic method may actually be more accurate for

larger timesteps. Thus the timestep must be carefully monitored to insure accuracy, conver-

gence, and adequate conservation.

The selected asymptotic integration method has been described because it is particularly

effective in reactive flow problems. The overhead is low both because it is self-starting and

because it does not require any matrix inversion. Species densities at only one time level are

needed. Accuracy may be controlled by predetermined convergence parameters which control

the stiffness criterion, the timestep, and thus effectively the degree of conservation. The
Lmethod is stable even for large timesteps and it is easily vectorized for use in parallel processing

computers.

Another equation which often has to be solved in conjunction with Eq. (IV.l) is that for

the time rate of temperature change due to the chemical energy released. The internal energy,

E, of a system of molecular species at combustion temperatures cannot be related simply to the

temperature by a formula such as

U kT, (IV.9)

where f is the number of degrees of freedom. Instead we need to use Eq. (11.8),

E= (; (1)) - P, (11.8)

where H is the enthalpy of the system. Knowing the form of the enthalpy, we can find an

expression for OT/at. Since the expression for the temperature derivative involves all of the

an,/8t as well as expressions of the form Oh,/O: which may be expressed as powers of T, solv-

ing for T may be very expensive computationally.1 33
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As is clear from Eq. (1.8) as written above, the enthalpy may also involve complicated

sums over excited states of the molecule. However, when each of the species is in local ther-

modynamic equilibrium, the individual i, (T) can be evaluated as a function of temperature and

fit to a polynomical expansion. This has been done by many researchers for the data in the

JANAF tables [19] and by Gordon and McBride [20].

By using such tabulated values of hj (T) and hj, the tedious temperature integration can

sometimes be avoided completely. During each chemical timestep the total internal energy of

the system does not change but may be redistributed among chemical states. We may then

solve Eq. (11.8)' iteratively for a new temperature which is consistent with the new number

densities calculated. After each chemical timestep, the internal energy, E, is updated by a for-

mula of the type I(t + A,) = () + (nj(t + At) - nj ()) hoj(T). (IV.7)

A simple Newton-Raphson iteration technique is adequate. When incorporated in integration

programs, it converges in one or two iterations per timestep.

Thus far we have concentrated on the problems which arise when solving ordinary

differential equations and we have listed a number of techniques and algorithms to help avoid

them. In the remainder of this section we will give a number of examples of their application

to real physical systems.

IV.B. Examples of Chemical Kinetics Calculations

The solution to Eq. (IV.1) models tl time evolution of species densities in a homogene-

ous, premixed system. It is an idealized equation, and may be solved with some subset of the

restrictions: constant temperature, constant pressure, and constant volume. From the primary

quantities, the set {nW(t)}, a number of quantities can be derived which may be compared

directly with data. These include chemical induction times, emission intensities from excited

states of reacting species, and bulk quantities such as overall activation energy and total energy
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release. The solution of Eq (IV.1) can also be subjected to analyses which estimate, for a

given temperature and pressure, which reactions may be eliminated from the overall scheme or

which must be measured much more carefully.

IV.B.1. Shock Tube Expe iments

Shock tube studies of chemically reacting systems are perhaps the most commonly used

experiments to which Eq. (IV. 1) can be applied without incorporating the added complication of

coupled hydrodynamics. Figure IV.2 is a schematic which shows the idealized incident and

reflected shock waves which would be calculated from the Rankine-Hugoniot equations for the

bursting diaphragm problem. The fluid elements in the shock-heated regions Ax and Ax, have

been at the elevated temperatures T, and T for times between 0 and r, and 0 and r,, respec-

tively. Thus, for example, each fluid element starting from just behind the shock front has

been at T for a successively longer time. In this sense the x coordinate can be considered as a

time coordinate and by measuring species concentrations along Ax, the time evolution of (nji

is also measured.

There are, however, a number of physical effects which alter the ideal picture. First, Fig.

IV.2 is a reasonable approximation as long as boundary layer or damping effects are negligible

and thus do not disturb the shocked region. Also, the reacting gas must be dilute enough so

that no significant amount of the chemical energy released is fed back into the hydrodynamic

flow. It is further assumed that the effects of any initial transients due to the diaphragm burst-

ing contribute a negligible amount of energy to the system and will not significantly affect the

chemistry to be studied.

As an example of chemical modeling applied to shock tube measurements, we mention

the work of Olson and Gardner [211. Using data from a set of shock tube experiments on

methane oxidation, they were able to test eight different proposed mechanisms for methane

combustion. The tests ran over a fairly wide range of temperatures (1600-2500 K), pressures
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(0.15 to 10 atm), and stoichiometries. Their conclusion, that C2H6 and C2 hydrocarbon radicals

were a necessary component of the model, was a direct result of the series of simulations that

they performed. Similar work for methano-ethan. mixtures has been done by Westbrook [221

to study explosivity of vapors from liquid natural gas mixtures.

Recent work of Tabayashi and Bauer [23] used a combination of incident shock wave

measurements and numerical modelling to study the initiation mechanisms in methane combus-

tion. They were able to relate the spatial gradient of the total density, dp/dx, in the region Ax,

of Fig. IV.2 to the energy release due to the reactions. This expression involved species densi-

ties directly as well as terms such as dnjIdi in Eq. (IV.1). By combining this relation with a

postulated chemical mechanism, they used the model to study the importance of selected chem-

ical rates. Model calculations of dp/dx were then compared to experimental results.

As a final example of the use of chemical kinetics calculation to model shock tube meas-

urements, we cite the recent work of Shaub and Lin [24]. This study used the methodology

developed by Shaub and Bauer [251 for deducing chemical reaction rate schemes which give the

approximate bulk properties of systems not yet quantitatively characterized by experiments.

The method involves writing out all possible combinations of chemical reactions among an

allowed number of species. Then most of them are judiciously excluded, and for those remain-

ing, reaction rates are estimated. Species densities and ignition delay times were calculated

using the model they developed for diborane oxidation and compared to experiments. Without

resorting to ad hoc parameter adjustment, Shaub and Bauer obtained excellent agreement

with experimental data. Thus even tijough the kineics scheme they used is extremely compli-

cated and admittedly a first compilation, Shaub and Lin were able to model correctly the overall

energy release as a function of time. Although their approach might serve as a useful guide in

the absence of avalable experimental diagnostics, the method certainly needs more work to test

its generality.
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IV.B.2. Vertical Tube Reactor

In the vertical tube reactor [26], thoroughly mixed reactants at room temperature enter a

tube from the bottom and are driven upwards at velocities of about 5-10 cm/sec. Heating the

tube from the walls increases the gas temprature. In the simplest mode of operation, a steady

state flame is established in which the flow velocity is balanced by the flame speed. The use of

a temperature feedback control allows the location of the flame to be stablized to ±.5 mm for

many hours. In addition, these low temperature flames release very little heat so that the

resulting gradients in temperature and pressure are extremely small. Thus, kinetic models of

the combustion which ignore the fluid dynamic or diffusive transport terms are an excellent

approximation.

The vertical tube reactor has been used primarily to study the low temperature oxidation

of hydrocarbons [26,27]. One such study was the search for the source of chemiluminescent

formaldehyde which occurs in the oxidation of di-tert-butyl peroxide (DTBP) [28]. A reaction

mechanism has been proposed for DTBP oxidation and it has been tested by comparing model

calculations of the product distributions to gas chromatography and mass spectrometer measure-

ments. There are two types of reactions which may be responsible for the excited formal-

dehyde state, H2CO*, either the reaction of two methyl peroxy rad cats

CH30 2 + CH30 2 - CH2OH + 112CO + 02,

or hydrogen abstraction from a methoxy radical by another radical,

CH30 I- CH30 - CH 3OH + H2CO.

CH30 + OH - H2CO. + 1120

CH30 + CH 3 - H2CO* + CH4.

These reactions, which involve either methyl peroxy (CH30 2) or methoxy (CH30) radicals,

would result in increased luminosity if the amounts of these radicals were increased. Modeling

of the time-dependent chemical kinetics reaction mechanism using sets of equations such as Eq.

(IV. 1) has determined how much radical forming dopant must be added and where to add it.
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Experiments based on these designs have been successfully carried out and showed that

methoxy radical abstraction reactions were not the source of excited formaldehyde.

In this section we have briefly mentioned just a few of the modelling studies from the

vast literature of those performed using a set of equations such as Eq. (IV.). These studies

have shown that extremely valuable kinetic information about the overall consistency of com-

plicated reaction schemes may be derived. By using these studies in conjunction with experi-

mental data, we can test the validity of a proposed mechanism and determine which reaction

rates and chemical species must be included. Deficiencies in kinetic models may become obvi-

ous when the rate scheme is either tested against independent sets of data or is applied in new

regimes of pressure or temperature. In Section IX we describe several attempts to use com-

bined chemical and hydrodynamic models to test the reaction rate scheme.
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4 V. GENERAL HYDRODYNAMIC CONSIDERATIONS

This section discusses some of the basic physical and numerical considerations which arise

when dealing with the disparate time and space scales in reactive flow hydrodynamics. The

Lagrangian and Eulerian approaches for solving the continuity equation are discussed, and we

will sniow that neither approach is a panacea. Next we describe the fundamental differences

between numerical methods used to study supersonic and subsonic flows. The discussion of

general hydrodynamic considerations closes with an analysis of tecaiques for dealing with

geometric complexity. Multi-dimensional generalizations in both Eulerian and Lagrangian for-

mulations are described briefly.

V.A. The Eulerlan and Logranglan Approaches

Equation (11.1) expresses the conservation of mass of a system. It may also be written as
r

a-- + v ._P = -r. v y (V.1)

where v __p and pV v represent convection and compression, respectively. The time

derivative Op/Ot is the Eulerian derivative: it represents the time rate of change of density in a

fixed volume of space. We may also write Eq. (V.1) as

d= + v. __ - -P2 .v, (V.2)

where the term dpldt is the Lagrangian derivative. Eq. (V.2) expresses the local density

change in an element of fluid moving with the flow. Thus in an Eulerian finite difference

scheme, the spatial grid points are kept fixed and the fluid moves across them. In a Lagrangian

scheme, the grid points are allowed to move with the fluid.

V.A.1 The Eulerian Approach - Dealing with Numerical Diffusion

Accurate resolution of steep gradients is extremely important. Because flame speeds{depend on steep species gradients, so do the local energy release rates. Unless Eulerian calcula-
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tions have very finely resolved meshes, the continual motion of fluid through an Eulerian grid

ensures that there is a substantial amount of numerical diffusion. The numerical diffusion

arises as a consequence of the requirements imposed by the numerical methods which keep the

solutions both stable and positive,

Figure V.1 shows qualitatively how numerical diffusion arises in the simplest Eulerian

convection algorithm, the first order "unwind" or "donor cell" algorithm. The correct advection

(dashed line) of a species interface initially at x - 0 at time 1 = 0 is compared to that given by

the donor cell algorithm (solid profile) for three timesteps of duration 8t. The uniform velocity

from the left, v, the timestep, 81, and the spatial step, 8x, have been chosen in this example

such that v8t/8x = 1/3. This means that the correct species discontinuity from p - Po top =

0 moves from left to right at one third of a cell per timestep.

The numerical solution is found from the simple finite difference formula

P111+" = P1! - V81' - P'10, (V.3)

where the superscript n refers to the timestep number and, as throughout this section, the sub-

script i refers to the cell number. When the velocity is negative, the formula is biased from the

right, or "upwind', side,

S=" v - "). (V.Y)

In either case, as long as IvBt/8x1 K I in each cell, the new density values lp,,+t) at =

(it + 1)8t are all positive as long as the densitq values at time i = n8t, i.e. the (p", are all

positive. The price for this guaranteed positivity is the rather severe unphysical spreading of

the density discontinuity which should be located at x- vi. As we will see, this unphysical

spreading is quite rightly called "numerical diffusion" because the added term needed to stabilize

and keep positive the numerical solutions appears in the form of a three-point finite-difference

diffusion operator.
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V.A.2 An Analysis of Numerical Diffusion: Positivity and Stability

From the moving fluid frame of reference in the example of Fig. V.1, the crumbling away

of the sharp discontinuity looks like the physical process of diffusion. However, it arises from a

purely numerical source. This numerical diffusion occurs because material, which has just

entered a cell and is still near one boundary, is smeared over the whole cell. In any attempt to

reduce this diffusion, higher-order approximations to the convective derivatives are required.

Cousider the usual three point explicit finite difference formula for advancing {PI) one

timestep to (p, +1},

p,11+i apL1 + bp" + CP/+I. (V.4)

• :: This general form certainly contains the contribution from Eqs. (V.3) and (V.Y) above and will

also allow us to investigate second-order accurate algorithms with reduced numerical diffusion.

As before, let 8x be constant from cell to cell and let 8t be constant also. Then Eq. (V.4) can

be rewritten in conservation form as

" 11Ei+i/2 P,+I + p") - ,-/ 21" + P;' - )

I + [V,+ 1/ 2 P'+ - Pf) - ,'-v1 2 (P,' - p11,-l (V.5)

where he.e the parameters e and v will be defined below. When mass conservation is required

of Eq. (V.4) to constrain the coefficients (a,), (b,), c,), we obtain

aj+ 1 + b, + c,_1 = 1. (V.6)

Positivity of (p,"+') for all possible sequences (p:') requires that (a,), {b,}, (q) be non-negative

for all i.

Identifying terms between Eqs. (V.4) and (V.5) gives the relations

a, vi 1/2 +1

b, I - 'E,+/2 ,-/2- v,+ 11 2 - v,- 11 2, (V.7)
2- I
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where (E,+1/2  vi+1/28t/Sx) and {,+112) are non-dimensional coefficients of the density aver-

age and density difference terms and appear as a natural consequence of considering only adja-

cent grid points. If the (Vi+ 112 are all positive and sufficiently large, they can ensure that the

(Pill} are positive. The positivity condition derived from Eq. (V.7) is then

+ 1 I+1/21, for all i. (V.8)

Thus we see that the condition in Eq. (V.8) for linear positivity in Eulerian convection leads to

the strong "numerical diffusion"

p41+l p, + v,+l/2 (p ., - p/) - v,-i 2 (p '-_ P 1'-) (V.9)

where v,+12 > l - ,+-1/. This is first order numerical diffusion and rapidly smears the initially

sharp discontinuity. If algorithms are used which have v,+11 2 < " is not

necessarily destroyed but can no longer be guaranteed. In practice the positivity condition is

almost always violated by strong shocks and discontinuities unless the inequality stated in Eq.

(V.8) holds. Nevertheless, the numerical diffusion implied by Eq. (V.8) is unacceptable, so

some remedy must be sought.

Finite difference schemes which are higher than first order sacrifice assured positivity to

reduce the numerical diffusion. The diffusion cannot be zero, however, because the explicit

three-point formula, Eq. (V.5), has a numerical stability problem. Rather than using the

discontinuity analysis of Fig. V.1, stability is better analyzed by studying test functions of the

form

p" = p"e-", (V.10)

where 3 k8x = 27r8x/k and i indicates 1-. Substituting this solution into Eq. (V.5), with

the fluid velocity taken constant everywhere, gives

p po 1- 2v(I - cos m)-2€ sin A], (V.11)
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where we assume {vi+12} - v and E,+1/2) = E. Since the exact soluton to this linear problem

is= N eI- , the difference between this simple result and Eq. (V.11) constitutes

the numerical error generated each timestep.

If 1p n+ /p" A, the amplification factor of the finite difference algorithm, linear stability

is always assured provided I A 12 < 1. From Eq. (V.11),

w A12-- 1- 4 s- (v-2 2)(1- cos p)+ (4, 2 - E2)(1- cos/3) 2, (v.12)

which must be less than unity for all permissible values of 3 between 0 and ir. In general,

then, v > I e 2 ensures stability of the linear convection algorithm for any Fourier harmonic of

the disturbance provided that 8t is chosen so that IE < 1. When v > 1/2, it is also easy to see

that there are combinations of E and 3 where I A 12 exceeds unity (for example, e = 0 with/3 =

ir ensures I A 12> 1). Thus the range of acceptable diffusion coefficients is quite closely

4 ;prescribed:

> > LIEI> 12,
2 -2 (V.13)

with the additional constraint le I K 1 as noted above.

Even the minimal numerical diffusion required for linear stability, v - , may be quite

2'

substantial when compared to the physically correct diffusion effects such as thermal conduc-

tion, molecular diffusion, or viscosity. Figure V.2 shows the first few timesteps from the same

test problem as Fig. V.1, but using v = E2 rather than the v = 1E required for positivity.

The spreading of the profile is only 1/3 as great in this marginally stabilized case as in the pre-

vious case where positivity is assured, but a numerical precursor still reaches a full two cells
beyond the correct discontinuity location. Furthermore, the overshoot between x = -8x and

x = 0 observed in Fig. V.2 is a natural consequence of underdamping the solution. This loss of

monotonicity is equivalent to violation of positivity. When the convection algorithm is stable

but not positive, the numerical diffusion is not large enough to mask either numerical
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dispersion errors or the Gibbs phenomenon discussed in Section III.

The requirements for positivity and accuracy would then seem to be mutually exclusive

from the arguments given above. The Flux Corrected Transport (FCT) algorithms [6,91 and

other nonlinear monotone techniques were invented to circumvent this dilemma by using the

more accurate 1-2 limit where monotonicity (i.e., positivity) is not threatened and by using the

stronger 1 le I diff,. .un when it is required to assure monotonicity of the solution. Thus these
2

monotonic algorithms have opened up a new approach to calculating convection accurately.

To prevent negative density values which could arise intermittantly from Gibbs errors, a

minimum amount of dissipation must be added to the convection to assure positivity as well as

stability at each individual timestep. We write this minimal dissipation as

V (C + I1), (V.14)
2

where here c is a "clipping' factor, 0 K_ c < 1, describing how much and how often an extra

amount of diffusion, an amount over the stability limit, must be added to ensure positivity. In

the vicinity of shocks, c 1, and in smooth monotonic regions away from local maxima and

minima, c = 0.

The least damped flow which a simple Eulerian scheme can propagate can be expressed in

terms of a flow Reynolds number calculated as if the unavoidable numerical diffusion were

actually physical viscosity. Substituting Eq. (V.14) into Eq. (V.12) gives

id'12 I - 21EIc (1 - cos 9)+ e 2I (c +) 2 - 1](1 - cos )2

[I - If I (c - cos )]2. (v.15)

The amplification factor, d, can also be identified with the exponential damping rate of the

numerically computed solution,

!- V,. (V.16)
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From Eq. (V.16) and Eq. (V.15), we can make the identification

S8,t e IIc(I - cosp) -L-'ck28x2.  (V.17)

Here the characteristic length scale of the disturbance is designated by L 1/k. The Reynolds

number, R , is the ratio of a dissipation time for structures of size L relative to the con-

vection time across a distance L. Letting Re,,d be the effective dissipation Reynolds ;lumber

due to numerical diffusion, we have

LiRd v c8x (V.18)

which is seen to be independent of the timestep.

Equation (V.18) gives the so called "cell Reynolds number" for an Eulerian flow computa-

tion. It is roughly 21c times the number of computational cells within a structure of charac-

teristic size L. Thus one sees immediately that the full linear positivity condition (c - 1) is the

source of the misconception that the highest Reynold's number flow which can be calculated by

an Eulerian method is roughly twice the number of cells across the system. To provide the

incompressible flow equivalent of positivity everywhere, even the most accurate spectra, simula-

tions use a "real" viscosity chosen to guarantee positivity numerically. Clearly the monotonic

schemes, such as FCT, which vary c locally and nonlinearly from cell to cell to maintain posi-

tivity, require less overall dissipation and hence are potentially more accurate for simulating

high Reynolds number flows. If the average value of the clipping factor c is 1/10, the cell Rey-

nolds number is 2 x 103 on a finite-difference representation of a physical system with 100 cells

in each direction. In fact, the clipping factor generally decreases in time as short wavelength

structures are smoothed out until a balance is reached between the physical generation and the

numerical destruction of short wavelengths due to the nonlinear flux-correction process.

When short wavelength components of a profile are not dominant, the long wavelengths

can be calculated much less dissipatively than is implied by the usual Rod 2L/Sx limit. In
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these cases positivity is not a major problem and small values of the clipping factor suffice.

When short wavelengths are present at large amplitude, the local application of nonlinear

monotonicity algorithms still allows the longer wavelengths to proceed at higher Reynolds

number. Then strong smoothing is only applied in a small region and hence is applied pre-

ferentially to short wavelengths.

Clearly two concepts of cell Reynolds number are needed, one related to resolution and

one related to algorithm damping a long wavelength. When short wavelength structures are

absent or can be neglected, the longe , slowly decaying wavelengths can be calculated accurately

in much higher Reynolds number flcvs than the usual numerical cell Reynolds number limita-

tion suggests. Short wavelength structures still exist in the calculation for a finite length of

time, but they are not excited. When the flow continually generates many dominant short

wavelength structures, the clipping factor c may approach unity. Then the two different numer-

ical Reynolds numbers approach the low value usually quoted.

V.A.3 The Lagrangian Approach

The most appealing properties of Lagrangian methods arise because the convective deriva-

tive no longer appears explicitly in the problem and the calculation is done in the frame of

reference of the moving fluid. Since each Lagrangian cell moves along with the fluid, it does

not trade material with neighboring cells due to convection. Thus the mass in each cell is fixed,

and the density in each cell varies inve'sely as the cell volume. In the absence of molecular

diffusion, the total mass of molecules of each species also remains fixed in the Lagrangian cell.

Thus species penetration at reactive interfaces is free of numerical diffusion. Lagrangian calcula-

tions are able to sustain high Reynolds number flows for long times relative to their Eulerian

counterparts and they make the treatment of interfaces, free surfaces, and moving boundaries

more natural. Why, then, use Eulerian methods at all?

Lagrangian methods do have some extremely severe problems. The foremost problem
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occurs in multi-dimensional calculations when the convection of the grid with the flow leads to

large grid deformations and a corresponding decrease in numerical accuracy. Regridding and

remapping techniques introduce numerical diffusion into the problem just as if a simpler

Eulerian calculation were performed initially. Methods have been proposed by, for example,

Noh [291, Chan [301, and Lund [311 who suggest combinations of Eulerian and Langrangian

calculations to reduce the numerical diffusion associated with regridding. However, any reloca-

tion of grid points necessarily re-introduces numerical diffu.sion through interpolation.

A second problem arises because a high order of accuracy, particularly of spatial derivative

terms, is difficult to achieve in Lagrangian calculations. When the computational grid moves,

uniform spacing is not generally possible. To construct high order derivatives in a time vary-
1

ing, nonuniform mesh is difficult and first order algorithms are hard to avoid. One problem,

maintaining positivity, is replaced by another: the introduction of first order aspects into the cal-

culation.

EThe third problem is that Lagrangian representations of a compressible fluid still have

unavoidable Eulerian features [5]. Consider a simplified form of Eq. (11.3), the energy conser-

vation equation,

_ _- -V.Ev- V Pv (V.19)
ot

where

E - + 1 P° v2. (V.20)

IThen if we define a new velocity

v* (E + P)
-= E v, (V.21)

which is always parallel to v, Eq. (V.3) can be written in the form

0E = _V Ev* (V.22)
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which is identical in form to Eq. (11.1). However, v ;d v'. A grid moving at velocity Y is

Lagrangian for mass but not energy, and a grid moving at v* is Lagrangian for energy but not

mass. Since we are often required to solve the full set of equations simultaneously, as in shock

or detonation problems, we cannot always avoid the Eulerian aspects of the problem. Thus we

are effectively forced to solve many complicated flow problems on an Eulerian grid whether we

want to or not.

In addition, Lagrangian calculations in multi-dimensions are very complicated and can be

much more expensive per grid point than Eulerian computations. Another problem is that

inexpensive direct solution algorithms of elliptic equations cannot be applic. Finally, adaptive

gridding is just as important in Lagrangian simulations of flame propagation as it is in Eulerian

calculations and is more difficult to implement. We return to these gridding difficulties below

in Section V.C. Thus we must debate these various advantages and disadvantages for a particu-

lar problem before we choose whether to use an Eulerian or Lagrangian method.

V.B. Calculation of Supersonic and Subsonic Flows

Modelling combustion systems requires the description of flows which are subsonic, such

as flames, and flows which are supersonic, such as shocks and detonations. In the best of all

possible worlds, we would be able to handle both regimes of flow coupled to chemical reactions

and transport effects with one all-inclusive algorithm. Much work has gone into generating

such algorithms [32,33] in multi-dimensions as well as one dimension, but a price is paid for

the generality. In order to handle implicit sound waves, the problem is usually cast into pres-

sure equation form where a non-physical numerical viscosity is added to stabilize shocks.

Improper or fluctuating jump conditions result when shock thicknesses are restricted numeri-

cally to a couple of cells. Thus poor resolution and unnecessarily thick shock fronts result in

the tradeoff for being able to take long timesteps when the flow is slow and shocks are absent.

In addition, mplicit algorithms by themselves can transmit non-physical pressure pulses ahead
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of the shock with infinite speed.

Conversely, numerical artifices for dealing with nonlinear flows (shocks) degrade the

algorithm's performance on slower flows. When the flow velocity is small compared to the

speed of sound, the excess numerical damping, which stabilizes nonlinear effects in implicit

solutions of the fluid equations, usually appeirs as a rapid damping of oscillatory sound waves

and other local flows. The remnants of the complicated high-velocity flows of supersonic situa-

tions appear in subsonic calculations as unnecessary numerical damping. Thus we will describe

ways to handle the subsnic and supersonic limits separately. The methods are somewhat lim-

ited in generality, but offer advantages in accuracy, speed, and simplicity over the existing glo-

bal or composite implicit algorithms.

V.B.1. Supersonic Flows

Let us first consider supersonic flows. Finite difference calculations of the energy flow

associated with shocks suffer from the effects of numerical diffusion because it is not possible

to represent exactly structures such as discontinuities which are thinner than a cell. Since the

flow is at or above the sound speed, the Courant condition, c~b /8x K< 1, places a restriction on

the relation between the computational timestep, 8t, and the grid spacing, 8x. This condition is

about equal to limiting the flow speed to one cell per timestep. Thus there is no obvious

benefit from a Lagrangian formulation in the vicinity of a shock. There is also no obvious

advantage gained by using an implicit algorithm of the type described above or in Section V.B2

below unless approach to a steady state solution is desired.

There are a number of specialized techniques for performing transient one-dimensional

calculations which include gas dynamic shocks. The stardard test for these techniques is the

nonlinear Riemann problem, in which one is concerned with the evolution of a simple, arbi-

trary fluid discontinuity. For example, the discontinuity might be in the pressure, a situation

which occurs in the standard shock diaphragm problem discussed in Sections IV and VIII. In
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the method of characteristics and in several finite difference methods including Godunov's

widely used generalization [341 of donor cell differencing, a Riemann problem is solved cell by

cell or region by region in the flow. Integration is performed by analytically extrapolating the

flow forward in time.

Glimm's method (35,361 and more recent variations [37] attempt to avoid both the

diffusion inherent in Eulerian donor-cell algorithms and the potential complexity of following

characteristics in multi-dimensions. These methods discretize the location of discontinuities in

the flow, but allow the heights of the discontinuities to be accurately retained. This is just the

opposite of the more standard procedures in which the locations of characteristics are followed

accurately and then approximate heights of the discontinuities are used to interpolate back onto

an Eulerian or Lagrangian grid. Such a change of perspective was suggested by numerical

diffusion considerations at surfaces such as a contact discontinuity or a reactive species inter-

face. The price paid for precise shocks is an imprecise knowledge of their location. The ran-

dom or pseudo-random manner in which fluid values are assigned to the spatial grid leads to

errors as large as those encountered in the more direct but diffusive formulations. Mass con-

servation, momentum conservation, and energy conservation integrals cannot be guaranteed,

for example. A form of uncertainty principle, as briefly mentioned earlier, seems to be operat-

ing where various types of errors can be traded off against each other but not reduced simul-

taneously. This uncertainty is clearly just a re-expression of the necessarily finite resolution

every digital computation suffers.

Both the normal (Godunov) and the inverted Riemann (Glimm) approaches toward

numerical solution of gas dynamic shock problems suffer additional disadvantages. In multi-

dimensions and in non-Cartesian one-dimensional geometries, the general Riemann solution

for assigning and following the system characteristics does not exist. Therefore, a further set of

approximations must be made. To convert the general problem back to locally solvable

Riemann problems, the entire problem must be timestep split so that
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df fR R+V
+ -& (V.23)

dt dt dt

where dfxRdt and dfR/dt represent terms contributing to a solvable one-dimensional Riemann

problem in the x- and y-directions, respectively. The remaining term, g (f), must contain all

effects not representable as local Riemann problems, including those geometric effects which

arise even in one-dimensional cylindrical and spherical coordinate systems.

Riemann problems can be expensive to solve numerically, whether in the normal or the

inverted form. The general analytic solution of a particular specialized problem is of little use

in improving the overall accuracy of an algorithm which must solve much more general prob-

lems. Therefore one ought to have a good reason for adopting a technique which is constrained

to sets of equations of the rather specific Riemann form. However, it is only human nature to

pay careful attention to the parts we can solve analytically, df/dt and dfyg/dt, while paying

rather little heed to the "correction" term, g (f). Thus, while many methods may be excellent

for a specific, one-dimensional Riemann test problem, they cannot be applied with reasonable

accuracy to more complicated and realistic flows. To date, Glimm's method is one that seems

to fall into this category.

There is another concern over the applicability of techniques based on the nonlinear

( Riemann solution, and this is the importance of energy conservation in chemically reacting

flows. The normal techniques based on the Riemann solution sometimes have trouble guaran-

teeing the exact conservation of global mass, momentum, or energy integrals, and the inverted

Riemann techniques find it impossible. In the latter case, the random fluctuations in the pro-

gression of a shock followed by a reaction zone, for example, have the potential for losing or

tapping vast reservoirs of nonphysical numerical energy. It has been our experience that

numerical errors always congregate and grow in the close vicinity of physical inconsistencies and

discontinuities of the numerical techniques.

We have found that exact energy conservation is required in the vicinity of a detonating
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shock in order to avoid large errors. Small inaccuracies of 5-10% in the temperature behind the

shock can lead to errors of 100-200% in the profiles because chemical induction times are such

sensitive functions of temperature (Section VIII). Oscillations in temperature, even if the aver-

age value is correct, may give patches in the shocked flow where ignition takes place before any

of the surrounding fluid has ignited. A smoothly propagating detonation is thus impossible in a

calculational approach which displays oscillations at the top of a shock or the width of the reac-

tion zone.

Flux Corrected Transport techniques were developed to treat problems where extremely

sharp shocks must be represented without numerical oscillations appearing just behind the

shock. Because the method used to solve the equations is conservative, the discontinuity is

accurately represented. Further, because there is no added viscosity, shocks of 1 or 2 cell

thickness result. This is the sharpest transition which can propagate smoothly across an

Eulerian grid. In practical applications FCT reduces the resolution needed to perform most cal-

culations by about a factor of two or more in each direction when compared to standard donor-

cell and Godunov calculations. The ability of FCT algorithms to treat simple shocks and other

gas dynamic discontinuities so well arises because positivity, or more generally monotonicity, is

maintained individually in each conservation equation.

A number of monotonic convection algorithms have been proposed and tested in recent

years which are extensions, adaptations or variations of the basic positivity concepts embodied

in FCT. Harten [Il] has developed an "artificial compression method' and Van Leer [101 has

applied monotonicity to a number of finite difference algorithms including those based on solv-

ing a Riemann problem (e.g., [341). Recently Forester [381 and Zalesak [391 have considered

higher order formulations. The excellent shocked-flow properties of the FCT algorithm has led

to its use in both one-dimensional reactive flow calculations [40,411 and also in equivalent two-

and three-dimensional models [421. These are discussed in Sections VIII and X.

There are limitations to the applicability of the best energy conserving formulations. All
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finite difference algorithms have significant truncation errors, particularly near steep gradients.

4Since the velocity is driven by the pressure gradient and the pressure is derived from the fluid

energy density,

P= (Y- 1) E- 2 Ijpv], (V.24)±2

the potential for difference-of-large-number errors exists. The energy density ' is determinedI 1
from one continuity equation, whereas 1 pv 2 is determined from two others. Inconsistencies

in the truncation errors among these three equations are greatly magnified in the pressure when

the local fluid ki.etic energy density is much larger than the thermal energy density.

In chemically reactive flow calculations, the globally conserved quantity is E - E +

PV + n fj hoj, the total energy density including the chemical energy of formation of each

species. The quantity E is generally larger in magnitude than E. Thus difference-of-large-

number errors could cause a problem in evaluating P from a conservative, finite difference

treatment for the convective integration of E. In practice, we transform the energy equation to

solve for E, and then to treat the energy changes due to chemistry in a separate computation

based on the changing number densities,

A E, = A Ati, Ilj, (V.25)

', I
in order to avoid these difference of large number inconsistencies. This problem will occur to a

greater or lesser extent in all reactive flow calculations based on strict local energy conservation.

Complete consistency between the convection of E, if, and (nj) is not generally possible unless

species density positivity is sacrificed or the numerical diffusion is very large.

The importance of choosing the right form of the energy equation to solve is best illus-

trated by an extreme example. To be strictly correct, the rest mass energy density, ni 11"C2,~J

should be added to 9' and E, where C is the speed of light. In this case, normal atmospheric
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pressure, -106 ergs/cc would only appear in the twelfth decimal place and the calculation

would lose all accuracy. In the same sense, the term n nl hoi does not need to be included
j

when the timestep is very short because the change in temperature is required to be small dur-

ing a timestep for overall accuracy and each of the species number densities n. is being con-

vected separately. Typical chemical energies are measured in electron volts, while thermal

energies are typically only a tenth to a fortieth as large.

The explicit, energy conserving, reactive flow algorithms can be used effectively for many

subsonic problems, but the Courant timestep limitation becomes a burden when the flow is

slow enough. Many tests performed with FCT algorithms [6,91 show that sound can propagate

stably at about one cell per timestep whereas the flow becomes ragged when the distance

travelled per timestep exceeds a half cell. In practice, we always leave a factor of two leeway on

the flow rate condition to permit velocity changes during a timestep: the timestep is chosen so

the farthest that the fluid travels in any cell is about one quarter of a cell per timestep. Thus

flows as slow as Mach - 0.25 can be integrated stably and accurately with no appreciable extra

cost using an explicit algorithm. Since the complications involved for solving even the simplest

implicit algorithms cost at least a factor of three more in calculation time than for solving an

explicit algorithm, any flow which reaches velocities of about a tenth of the speed of sound can

probably be integrated cost effectively using an explicit algorithm. Nevertheless, there is a large

class of problems in which slower flows must be treated more efficiently, and these are dis-

cussed next.

V.B.2 Subsonic Flows

In many flame systems, as in the gedanken flame experiment discussed in Section !1, the

local sound speed is several orders of magnitude faster than the flame speed and oher charac-

teristic velocities arising in the fluid flow. Either an implicit or an asymptotic approach to the

fast acoustic waves is required in these cases to keep the computational expense within reason-

able bounds. In these situations, the internal energy at any instant is dominated by the thermal
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component, since the kinetic energy is quadratically small. Thus difference-of-large-number

errors can easily be kept small. Furthermore, a pressure formulation of the energy equation

becomes practical because shocks are no longer a consideration.

Other problems appear because of the greatly extended timescales. In the explicit calcula-

tions with short timesteps determined by the Courant condition, diffusive transport phenomena

are generally small effects and do not govern the very fast timescale phenomena. When the

timescales encompass phenomena such as flames and reaction waves, the diffusive transport of

material and energy can govern the system evolution and therefore must be calculated accu-
rately. Numerical diffusion becomes a much more serious issue because steep gradients have to

be maintained computationally for a much greater period of time. Thus calculations of sub-

sonic phenomena such as flame propagation can take better advantage of Lagrangian techniques

than can strongly shocked flows.

Any pressure fluctuation from thermal conduction or chemical energy release induces a

local flow of fluid which reduces the pressure deviation. The result of this tendency on long

timescales is to approach a constant pressure configuration. In a gravitational field, the pressure

exhibits a hydrostatic vertical stratification. In a continually flowing fluid, the pressure exhibits

small fluctuations consistent with the motion, but is essentially constant. Through a candle

flame, for example, the pressure is constant to better than 0.1%. This means that the local den-

I (sity and temperature, which vary much more strongly than pressure, are inversely related. Two

distinct ways to tackle the problem of calculating subsonic flows are discussed below: the vari-

ous implicit approaches and the asymptotic slow-flow approach.

When finite pressure fluctuations are important and the sound waves are of relatively long

{ wavelength, an implicit treatment of the pressure equation,

_P + v. VP -y P _ v + 1) V (A VT) + a/ (V.26)81aoIl [hem
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can be effective. We note that variations in the pressure appear explicitly except for the

coefficient yP multiplying the velocity divergence term. Thus, V • v 0 when the pressure is

nearly constant.

In global implicit approaches, the complete set of nonlinear coupled equations describing

the physical system is cast into a simple finite difference form. The spatial and temporal deriva-

tives are discretized and the nonlinear terms are linearized locally about the solutions obtained

numerically at the previous timestep [43,44,451. A single implicit equation results from taking

the divergence of the momentum equation and using the continuity or energy equation for the

mass or energy flux terms. This approach requires use of linear finite difference approximations

to the convective derivatives in order to effect an analytic substitution of one equation into

another. A rigorously correct treatment requires iteration, and large matrices must be inverted

at each timestep to guarantee stability, In one spatial dimension the problem usually appears as

a block tridiagonal matrix with M independent physical variables to be specified at N, grid

points. Then an MN, by MN, matrix must be inverted at each iteration of each timestep when

the chemistry as well as the fluid dynamics is treated implicitly. The blocks on or adjacent to

the matrix diagonal are M x M in size so the ovefall matrix is quite sparse. In fact, these are

often called block implicit algorithms. Nevertheless, an enormous amount of computational

work goes into advancing the solution even a single timestep. Multi-dimensional problems, in

this approach, lead to matrices which are MNNy by MNN, in two dimensions and MN, N N.

by MN N.N, in three dimensions.

When the implicit methods deal only with fluid dynamics, they are relatively inexpensive.

They do not, however, appear to permit use of a nonlinear, monotonic transport algorithm.

First order numerical diffusion is required to maintain positivity. To recover an equivalent

accuracy in an implicit Eulerian calculation involves at least doubling the number of grid points

in each spatial dimensin when the mass transport is convectively dominated. Thus the implicit

approach costs more by about a factor of 8 in two dimensions an 16 in three when monotonic
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transport algorithms cannot be used. This disadvantage is counterbalanced by the ability to take

much longer timesteps. McDonald [461 has compiled an excellent review which focusses

entirely on implicit methods.

Many variations of implicit algorithms have been discussed in the literature [e.g.,

33,47,481. In these approaches, an equation is derived for the advanced pressure which is

solved as an iteration between momentum and reduced energy equations. This approach, attri-

buted to Hirt and Cook [49], appears in the ICE and RICE algorithms. Ramshaw and Trapp

[50], however, appear to exclude their equation of state from the implicit, pressure-determining

iteration. Furthermore, Westbrook [47] shows that this sort of biased inconsistency can lead to

moderately large errors when incorporated in an energy-coupled, reactive flow calculation of a

premixed flame.

The slow flow approach of Jones and Boris [511 is an asymptotic rather than an implicit

technique. It works best in the limit where the sound speed is very large and the pressure is

essentially constant. This algorithm can also be derived from a reactive flow generalization of

Ramshaw and Trapp's formulation. It includes chemical and other divergence source terms and

allows for an average pressure increase such as occurs in closed vessels. Since they were not

concerned with numerical diffusion at a flame front moving through the fluid, but rather with

treating sharp interfaces which are nearly stationary in the Lagrangian sense, Ramshaw and

Trapp selected the donor-acceptor algorithm, a technique also employed by Noh [521 and Cho-

rin [531. Rehm and Baum [54] have derived the system of slow flow equations from a more

general perspective than Jones and Boris, although they have not yet explicitly considered the

chemical reaction terms. Their method presents a systematic expansion procedure where the

only effects of compression which are allowed are the asymptotic long-time changes in density

which result from local heating and cooling.

To lowest order, the slow flow algorithm has been implemented in cylindrical geometry by

Jones [51]. A complete detailed reactive flow model has been formulated where chemical
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kinetics and diffusive transport contribute to the lowest order asymptotic determination of the

velocity diverence from Eq. (V.26),

V v=- (y-)VXVT+ op - <dP>(
-- -- e t" (v.27)

YtId I

Here < dP> indicates the average pressure change in the system from external addition of

energy or compression. The curl of the velocity is still advanced by a time-dependent partial

differential equation,

-Vp+ V 2£ + X VP (V.28)

-
2

where the vorticity is x = V × v. The solutions to these equations no longer encompass

compressional sound waves. Strong compressions and rarefactions driven by chemistry and

conduction are allowed as long as they evolve slowly compared to sound waves.

There is an important advantage of this type of method: the way in which Eq. (V.28) is

advanced has been left unspecified, so that no compromise of positivity is required to imple-

ment an implicit algorithm and the best finite difference techniques available may be used for

convection. Both Eulerian and Lagrangian finite difference techniques can be used, although

Jones and Boris have used an Eulerian FCT algorithm.

There are also several complications which must be dealt with in any calculation using the

slow flow approximation. A net addition of heat to the system through chemistry, thermal con-

duction, or external sources changes the average pressure with time. In a closed container, this

average heating, <dP/dt>, cannot lead to a velocity divergence and therefore is subtracted

from Eq. (V.27) to get the correct value of V -v. Another result of this average is that the

pressure is essentially constant in space but not in time. Furthermore, pressure appears in Eq.

(V.28) as part of the vorticity source term. Properties of buoyant flames can be calculated by

using the average hydrostatic equilibrium pressure gradient which changes slowly with the aver-

age temperature. In certain types of self-consistent fluid dynamic problems we must solve Eq.
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(V.27) to first order as well as zeroth order to reproduce accurately the kinetic vorticity genera-

tion. This can still be done without jeopardizing flexibility in the cnoice of convective transport

algorithms.

In one-dimensional systems it is often as easy to set up the centered or fully forward

differenced implicit equations for mass, momentum and adiabatic energy conservation as it is to

use the slow flow formulation. Since the chemical species and diffusion velocities are not part

of the implicit formulation, this is not a block or global implicit algorithm and hence need not

be prohibitively expensive. Furthermore, such a generalization of the slow flow algorithm

allows the accurate treatment of adiabatic sound waves when the timestep is small enough. We

next consider briefly the use of suitable hydrodynamics algorithms in multi-dimensions, for

which all algorithms are more difficult to implement.

5
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V.C. Geometric Complexity in Reactive Flows

In this section four aspects of geometric complexity are considered briefly: representation,

spatial gridding techniques, fluid dynamics algorithnis, and auxiliary calculations. Of course an

overall concern is computational cost. Even if all the multi-dimensional generalizations of suc-

cessful one-dimensional techniques were available and easy to apply, multi-dimensional calcula-

tions could be prohibitive because the computing costs escalate so quickly. A one percent reso-

lution requires roughly 100 computational cells in one dimension, - I0 cells in two dimen-

sions, and _ 106 cells in three dimensions. The intrinsically greater difficulty of geometrically

complex flows and structures compounds the problem.

Thus some effort has gone into trying to find ways to represent multi-dimensional prob-

lems within a one-dimensional calculation. Variable metric techniques [9,551 allow an essen-

tially channelled one-dimensional calculation to represent multi-dimensional flow effects.

Cartesian, cylindrical, and spherical geometries as well as variable cross-section tubes are also

modelled in this way. Moveable end walls may be used in one-dimensional simulations of

internal combustion engines to simulate a piston within a cylinder. Of course, a simulation of

phenomena such as swirl, vorticity, shear, convective mixing and instability requires a multi-

dimensional model.

V.C.1 Problem Representation

We are faced with the first difficulty arising from geometric complexity when we ask how

to best set up a computational grid to use in multi-dimensional flow calculations. In two-

dimensional calculations, quadrilateral and triangular Lagrangian finite difference algorithms

have been used [30,56,571. They have not yet, however, been applied to chemically reacting

flows. Lagrangian computations have even been performed in three dimensions [581, but again

not yet for the reactive case.

The major problem in Eulerian calculations is numerical diffusion, which is decreased
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when the resolution is increased. However, even a Lagrangian grid of quadrilaterals has serious

problems due to distortion by grid stretching [56,57]. This grid distortion problem is generally

handled by grid re-mapping, [30,31,58,591 which itself is a numerically diffusive process. Inter-

mittant re-mappini, of a distorted Lagrangian grid can reduce numerical diffusion below

Eulerian limits when the number of timesteps between remap operations becomes large

enough. However, when short wavelength shear flows are excited, such as occur in reactively

driven or turbulent flows, even this potential improvement is of limited use.

The distortion problem for Lagrangian grids can be handled adequately by using a finite

f difference mesh of triangles rather than rectangles (tetrahedrons in three dimensions). This

technique, which has been used in many finite element representations, was adapted to finite

differences of incompressible flow [56,57]. The noticeable improvements in performance arise

for two reasons. First, the variable number of triangles permitted at each vertex allows smooth

representation of much more complicated shapes than can be treated smoothly by an equal

number of rectangular cells. Second, since the number of lines meeting at a vertex is not fixed,

it can be varied during a calculation by an automatic grid reconnection procedure to prevent

severe grid distortions.

While this approach may not be the only method of dealing with severe grid distortions, it

is the least numerically diffusive technique employed so far. Fritts [571 has recently employed

Lagrangian triangular grid techniques in studying nonlinear aspects of free-surface waves

including strongly sheared flows. Ten to fifteen full cycles of the waves can be integrated accu-

rately without significant numerical diffusion or other deterioration of the solution, and the pro-

cedure for reconnecting triangle vertices and effectively re-gridding in the presence of strong

shear is also reversible and nondissipative. There is another advantage to using triangular cells.

The nonlinear mesh-separation instabilities, which plague low-dissipation rectangular cell tech-

niques, seem to be essentially absent or damped with triangular finite difference cells. Draw-

backs to the triangular grid approach center around the complexity of the programming
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required. The arithmetic operations also seem to hinge strongly on linked lists, random access,

and sequential processing making parallel processing less advantageous than for simpler grid

structures.

V.C.2 Gridding

In Eulerian calculations adaptive gridding is often used to reduce numerical diffusion by

introducing additional computational zones. Therefore, the resolution is increased where gra-

dients of important quantities become steep. In Section VII adaptive gridding is discussed in

some detail as a means of solving multiple space scale problems.

V.C.3 Fluid Dynamic Algorithms

The block implicit approach, applied in an alternating direction implicit (ADI) framework

(43-461, is one way to calculate subsonic multi-dimensional .lows, In this method, calculations

are performed for one direction evaluating the properties of the other direction at values from

the previous timestep. A number of iterations on this procedure are required to couple the

whole calculalicn accurately. The addition of chemical reactions and molecular diffusion

strongly complicates this approach because the matrices which form each block can then

become large.

The slow flow algorithm discussed earlier was actually designed to take advantage ef the

improvements allowed by monotonic algorithms. Thus maximum resolution and minimum

numerical diffusion can still be achieved in an Eulerian representation. in two dimensions only

one independent vorticity component need be carried; in three dimensions there are two

Although obtaining the v,,:ocity field from the curl and divergence involves solving Poisson

equations which implicitly couple the entic spatial mesh, these are linear, scalar equations for

which a number of relatively efficient sol.tmon techniques exist. These governing Poisson equa-

tions are simpler than the iterated, block tridiagonal equations which arise using the implicit

approach. Furthermore, the increase in numerical resolution afforded by the application of
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monotone methods allows comparably accurate solutions with many fewer cells, and hence with

reduced computational cost.

V.C.4 Auxiliary Equations

Because we do not have the computer memory available to model an infinitely large

region of space or to resolve most boundary layers near a solid wall, the application of boundary

conditions to reactive flow computations is an economically important issue. It is also a techni-

cally complicated issue because there is more latitude for conceptual and programming error in

$treating boundary conditions than t)-are is in almost any other aspect of setting up a detailed

computational reactive flow model. We must determine the correct conditions to apply, how to

implement them numerically, and also whether the numerical model allows unwanted interac-

tions between the boundary condition equations and the equations describing the inside of the

region.

4 Here we will consider generically only three types of boundary conditions:

1. Ideal (or non-) boundary conditions,

2. Wave transmission (or radiation) boundary conditions, and

3. Continuitive (or outflow) boundary conditions.

Because boundary conditions are problem-specific, little of a gener.i applicable nature has

been written about them compared to the discussions of the numerical techniques which have

been published. However, in the review of the APACHE code [4F1 and in Turkel's review

[611, relatively thoroipgh discussions are given of how to apply boundary conditions at the edge

of a region in a finite difference representation.

The easiest and perhaps the only way to treat boundary conditions accurately is to get rid

of them. This can be done in problems where a symmetry condition exists, since then all

boundary points can be treated as interior points. To simplify programming, code designers

generally inlclude one or mi.ore layers of "ghost" or "guard' cells at the edge of the
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computational region. When values of the physical variables on the boundary cannot be deter-

mined by direct application of the finite difference equations, (i.e., some pieces of information

required are determined by a fluid element off the edge of the mesh), modified boundary for-

mulae for the guard cells are developed which depend only on the information from the inte-

rior. This requires using a one-sided formulation for the extrapolation unless a symmetry con-

dition is available to define the ghost values in terms of the newly computed interior cell

values.

The simplest of these "non-boundary" conditions arise in cases where some aspect of the

boundary can be approximated as a smooth hard wall. Periodic situations, as arise in the con-

sideration of circular systems (stacks of turbine blades, for example), cylinderical systems, or

spherical systems, are easy to handle numerically. When flow is directed normal to a wall at

cell i - 1, physical conditions at i - 0 beyond the boundary may be approximated in terms of

conditions at i = 2. For example,

p (0) - p (2),

P (0) = P (2),

V1(0) = - VI(2), (V, 1)= 0) and
V11(0) = V,1 (2) (free slip).

It is also possible to place a fictitious wall halfway between cells. For example, a solid wall at

i= 1/2 has

p(O) = p(0,

P(0) = NO,

V (0) = - V (1), and

V11 (0) = - V11(l) (zero tangential velocity).

More complicated and therefore uncertain boundary conditions lead to more complex for-

mulae for values at the guard cells. In many cases, a localized phenomenon is being simulated

which produces a growing disturbance that propagates away from ",,e region of generation and

interaction. In this case we could allow the computational cells to increase in size as they get

farther from the interaction. Thus, the computational domain is very large and there is no
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corresponding increase in computer storage. The cell stretching should be limited to 5-20% per

cell to limit inaccuracies which arise as a result of the varying cell size.

It should be noted that when higher order algorithms are used inside the computational

region, it is often more difficult to apply complicated boundary conditions. In low order local

algorithms, errors cannot propagate far from the boundaries very quickly and in general the

solutions are heavily smoothed. High order methods, such as spectral or pseudo-spectral

expansion techniques, may cause more problems because of the highly non-local nature of the

techniques being employed. Monotonic convection algorithms are generally advantageous near

complicated boundaries because they are stable and as easy to apply as low order methods.

The application of boundary conditions becomes progressively more difficult as we con-

sider the four types of terms of Section III. Source, sink, and coupling terms are local; hence

interior points and boundary points behave similarly. Diffusive effects are easy to represent at

simple boundaries even when we use an implicit formulation. The value of the quantity being

diffused (for example, temperature) can be set or, the boundary or the flux can be specified.

Treating wave and convection effects can be much more difficult. Since waves often pro-

pagate with very weak damping, smoothing through numerical diffusion cannot be relied on to

mask errors in boundary conditions in the way it can be used when modelling diffusive

phenomena. In linear and nearly linear problems, it is sometimes possible to isolate analytically

the ingoing and outgoing wave systems at the boundary. When this can be done, non-reflective

conditions, sometimes called the radiative boundary condition, can be applied by zeroing the

incoming wave system and analytically extrapolating the outgoing waves. As a less efficient but

more general alternative, a so-called damping or sponge zone may be established in the first few

layers of cells adjacent to the boundary. When fluid flow is involved, this region is often called

a Rayleigh viscous zone. As a distum bance propagates into the dissipation region, it encounters

a medium of increasingly greater danping until the wave can no longer propagate. There will

be some signal reflection off the gradient in the damping coefficient Thus the optimum
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absorptive boundary is obtained when the spatial variation of the boundary damping coefficient

is gradual enough that the outgoing waves reach far into the damping region. These waves then

become trapped before the unphysically reflected wave component becomes appreciable. This

technique has been used for electromagnetic waves and gravity waves. Although absorption is

not perfect, four or five cells are enough to reduce the spuriously reflected wave amplitude by

more than an order of magnitude relative to the original wave. Ten cells should be enough to

guarantee 99% absorption.

The most difficult boundary condition has always been the continuitive boundary condi-

tion for describing the fluid flowing off of a mesh. The one or two lines of ghost cells at the

boundary of the region of computation have to represent an infinite outside world whose exact

response to what goes on inside the computational region is known only approximately. The

problem is again to avoid non-physical reflections and interactions of outward moving flow

structures off the boundary and back into the fluid. In all but the simplest linear problems, the

continuitive algorithm finally implemented is approximate because inward and outward pro-

pagating waves and pulses will be indistinguishable locally for the nonlinear fluid dynamic equa-

tions. Monotonic convection algorithms allow extrapolation of the fluid flow parameters off the

edge of the system by setting the ghost cell values equal to those just inside the mesh. When

two-dimensional or three-dimensional flows are being considered, the extrapolation should be

done along the fluid flow lines. In linear convection algorithms which do not have positivety

guaranteed, such as extrapolation is often unstable. However, by breaking the fluid disturbance

into its constituent characterstics and extrapolating each of these out to the guard cells, a stable

if approximate outflow algorithm is obtained for all but the most finicky convection algorithms.

In many fluid dynamic and heat transport calculations, the solution Gf general elliptic or

parabolic equations is required in order to represent physical processes other than convective

fluid flow. Whether implicit algorithms or slow flow algorithms are used, Poisson-like equations

appear defining quantities such as pressures or velocity potentials. In most situations, the result
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of any small scale transport process appears as a diffusive behavior on the macroscale. When

the small scale transport is very fast (e.g., photons travel at the speed of light in radiation tran-

sport), the derivative macroscopic diffusion equation can be stiff, and thus some form of non-

local implicit or asymptotic formulation may be required.

We conclude this section with a brief discussion of solution techniques applicable to the

elliptic implicit equations which arise in the stiff multi-dimensional hydrodynamic and heat tran-

sport portions of the reactive flow calculation. Iteration techniques are useful and easy to pro-

gram, but they are computationally expensive relative to more direct solution methods. When

the finite difference coefficients are constant in any dimension, either Fourier transform or fold-

ing :echniques can reduce the effective dimensionality of the problem. When the dimensional-

ity is or has been reduced to unity, a direct solution is possible using fast tridiagonal algorithms.

Eulerian representations often allow the use of such direct solutions, which are exact and very

efficient [62].

When the coefficients of the elliptic equation are variable, due either to physical or

geometric reasons, direct solutions are still possible but generally become more expensive

because a massive matrix must be inverted. Sometimes iterations are even employed to speed

up the solution, as in the incomplete Cholesky-Conjugate Gradient methods [63] and their vari-

ants. The efficiency is higher for a given required accuracy than using methods based on ADI

or over-relaxation iteration, bu* many iterations are still needed in some situations. A new

direct method, SEVP [64], has recently been published which is based on an error sweepout

technique. This has I ,n applied to a number of difficult problems in weather modelling and in

combustion [50]. Unfortunately, no generalization of efficient, accurate direct solutions of

llochney [621 or Buneman [651 to the general coefficient (rectangular grid) elliptic equation has

yet been discovered. In the simplest case, solution of a 5-point Poisson equation approximation

on a rectangular grid, the regular structure of the sparse matrix is retained when the zones are

non-uniform in size, but the direct solution techniques will not work because the coefficients
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are now variable. Therefore, a search is on to find an algorithm for inverting the two-

dimensional 5-point Poisson operator in 61(N log 2 N) operations where N = Nx x Ny is the

number of distinct potential values being sought. Direct inversion of the sparse matrix requires

O(N 3) operations, but consideration of the block nature of the sparsity pattern allows this to be

reduced to O(N 2). On a 100 x 100 mesh, the determination of an (N log 2 N) solution would

reduce the solution time by a factor of about 15.
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VI. DIFFUSIVE TRANSPORT PROCESSES

The term "diffusive transport processes" refers to molecular diffusion, thermal conduc-

tivity, viscosity, and thermal diffusion. These are the parts of Eqs. (II.1)-(lI.5) which are

represented by the expressions

= = - 7.nj , species diffusion, (VI.1)

( v .-) (V v + (V v)) viscosity, and (VI.2)

= v- XV T + Th,,,,_, + j 'of
-'7 V- -V T + kZ N Dj (77-,V ,L thermal conductivity, (VI.3)

0: j jA

where the individual variables are defined in Section II and in the Glossary. Transport

processes are crucial to the description of flame ignition and propagation since they are the

mechanism by which heat and reactive species are transported ahead to the unburned gas.

These processes are less important to the overall behavior of well established shocks and deto-

nations because the characteristic timescales for transport processes are much longer than those

needed to characterize processes moving at faster than the sound speed.

This section first describes an iterative algorithm for solving for the diffusion velocities,

{Vi), which avoids the cost of performing matrix inversions. It then summarizes appropriate

Sformulae for evaluating X, -, DA, and DT in multi-component systems of neutral gases.

VI.A. Iteration Procedure for Diffusion Velocities

The difficulties of dealing with disparate time and space scales are further complicated

when there are large numbers of reacting species. If the cost of a calculation merely scaled as

the number of species, M, the problem would be tractable. However, whenever a matrix of

size M x M must be inverted, the operation count scales as M 3. Section IV discussed this

problem in terms of the solution of the coupled ordinary differential equations describing com-

plex chemical reaction rate schemes. The solution suggested was to use a combination of
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asymptotics for stiff equations and a second order methods for normal equations, thus avoiding

the cost of matrix inversion associated with the global implicit methods while maintaining the

accuracy of the calculation.

The probiem of matrix inversion occurs again when solving Eqs. (1.11) and (11.12), writ-

ten here as

M

k-I

where k j

I ]L I V P 1, 2TTM9I~~- -_v N Pj T -- v

in which the diffusive transport coefficients appear in Wjk and Yk. Because the straightforward

inversion of Eq. (VI.8) to find {.} requires -M 3 arithmetic operations for each spatial direc-

tion, a more efficient method must be found when there are more than four or five species

involved. Here the problem is one of avoiding computational expense, not numerical difficulty.

The most efficient algorithm we have found [51,66] requires -M 2 operations and is based

on a special initial guess. When both Eqs. (VI.8) and (VI.9) are summed over all species, we

find that

Af s, =j o 0VM10)
t i-I

where the notation indicating spatial direction has been dropped. Since {S) sums to zero, the

matrix W is singular as defined in Eq. (VI.8) and the A different diffusion velocities cannot all

be independent. The extra equation needed is the contraint

A/

I p, Vi =o. (v.l 1)
1-1

We will use the fact that once a particular set of solutions { V') is known for Eq. (VI.8), any

constant velocity may be added giving another equally correct solution 1I/1' + 8 V} for

j 1, ... M. This as yet undetermined constant, 8 V, may then be used to enforce the con-
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straint Eq. (VI. 11).

Let the diffusion coefficient D, describe diffusion of species j through the background

provided by the sum of all other species. Then the zeroth order and starting approximation for

the j th diffusion velocity, Vio, may be written as

Vfl P - p i NDs
p-p J N2D Si(- ~ n -' (V I. 12)

P (N n,)n
Higher order terms arise as corrections to the lowest order solution to the diffusion velocity,

V- V1 l + a v. (VI.13) 4

The equations for (8 V} are found by substituting Eq. (VI.13) into Eq. (VI.8), from which one

finds

M M ,Sj I-- Ajk SA Y. Wk (8 VA 8 Vfl. (VI. 14)
A-I k-I

Now (Djs} has been defined to be

D j, D- "A I (V I.15)

(N-ni)

and the matix elements of A are given by

Aj P 8jk + Du- (p (PA) D4, (VI. 16)
p DA p (N-nA4)

Equation (VI.14) defines a linear system of equations which can be solved for the {8 V).

The right hand side of Eq. (VI.14) vanishes when summed on j. It is easy to see that the

choice of AA here is not unique. Since Eq. (VI. 11) is true, each row of the matrix A can have

an arbitrary constant added according to

Aj - AjA- C (VI. 17)

without changing Eq. (VI.14). Such constants leave (8 Vj unchanged. The general form of the

complete solution (assuming convergence of the sum) is

-ap-p ) N2D,,
V(N-n)n [8,,,, AJ, + A IA IA + ... 1S, (V1.18)
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where the matrix in square brackets is just the formal expansion of [1-A[-.

Numerical evaluation of Eq. (VI.18) can take advantage of the fact that none of the indi-

cated matrix multiplications actually have to be performed. Since [S} is known, we multiply

from the right first. Each additional power of A is obtained by multiplying a vector, rather than

a matrix, by A. This expansion gives an O(M 2 ) algorithm. In practice we have found it con-

venient to take C = 0 in Eq. (VI.17) and we recommend truncating the expansion in Eq.

(VI.18) after the A2 term. At least the first correction Aik needs to be included to get the

correct sign for all the diffusion fluxes. The quadratic term adds significant extra accuracy and

further iteration is unnecessary. The errors remaining are at most a few percent.

The fast convergence observed seems to result from the initial approximation in Eqs.

(VI.12) and (VI.15). The factor (p-p,)/p in Eq. (VI.18) is crucial. When there are only two

species, i.e., N = ni + n2, this factor becomes p2/p as required to give the exact two species

result. Note that terminating the expansion of Eq. (VI. 18) at the 8jk term does not give Fick-

ian diffusion. The effective diffusion coefficient differs from Fickian by the factor (P-p,)/p.

Furthermore, Fickian diffusion need not even give the correct sign for the diffusive flux.

VI.B. Evaluation of Diffusive Transport Coefficients

In this section a number of extremely useful eqLations for diffusive transport coefficients

have been taken with some modification from the summary by Picone [671. The forms given

are for mixtures of neutral gases. Their derivations are based on or are advancements of the

fundamental work of Chapman and Cowling 1681 and Hirschfelder, Curtis, and Bird [3].

Throughout we have chosen representations of the coefficients which are easily used in reactive

flow models and do not require the expensive inversion of matrices.

VI.B.I Viscosity

The most convenient form for the viscosity of a gas mixture, has been given by Wilke
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[691

= + 2 (VI.19)

where Aj is the viscosity of the pure component j and to first order

1+ 1_2j Mk/412

9k - (VI.20a)

I and (Mi) are the atomic masses of the species. The species viscosities may be written [3,

Chapt. 8]

2.6XJl 50". - 2 (VI.21)
o(] 2 l2,2 ~cm-sec

where o- is the molecular collision diameter and fi2. 2 is a collision integral normalized to its

rigid sphere value. We note that when fi 2.2 Z 1, Eq. (VI.20) can be reduced to

j 1 + ( o-c)] 2

jk [I +M(VI.20b)

Equation (VI.19) differs from the form given by reference [3] in that pure component viscosi-

ties are required instead of binary diffusion coefficients.

VI.B.2. Thermal Conductivity

For the mixture thermal conductivity, an extremely useful equation has been given by

Mason and Saxena 170],

-- X,)j~ I ,2, + ,i, 0jA]- (VI.22)
2,~n Adj

where Ok has been defined in Eq. (VI.20a). The pure component conductivities may be writ-

ten in terms of monatomic thermal conductivities with "frozen" internal degrees of freedom,

-- A = * (VI.23)

and the Euken factor [711, E,
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Xj = Ej?,°,  (V1.24)

where

E= 0.115 + 0.354 _-__ (V1.25)v-I'

CP
and y is the ratio of specific heats, TPv The {X°} may be written as

Xo 8.322 x 10-4  T 1 erg (V26)
! .r2 p2.2 cm-deg-sec"

where again f12,2 1.

The expressions for {X), Eq. (VI.24), are fine for non-polar molecules and probably ade-

quate for polar modelcules. The origin of the difficulty [71] lies in the evaluation of the Euken

factor which is an average over microscopic states. The derivation of E assumes that all states

have the same diffusion coefficients and does not allow for distortions in the electron density

dcstribution function.

VI.B.3. Binary Diffusion Coefficients

For some pairs of inter-diffusing species, Mason and Marrero [721 give a table of very

accurate binary diffusion coefficients which may be put into the form

TN 1 - -c2 1 (VI.27)

When these have been not tabulated or measured, the {DA) may be estimated from

2.6280 x 10-3  fT3(Mj + M4)DIA- P I. - 2MjM(VI.28)

where

U jA + oA (VI.29)

The function 0 ,depends on the molecular parameters of species j and k and ranges in value

from 0.4 to 2.7 in the temperature range of interest. Tables of all the O's are given in refer-

ence [31.
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VI.B.4. Thermal Diffusion

Thermal diffusion is a second order effect [3,68] which is only of importance when there

are large differences between the atomic masses of the constituent species. The thermal

diffusion ratios (AjI are defined as

KT i IAk [[r D TJ
KPk (VI.30)

and also may be written as [58]

KjT 1 IMMk 116C* -51 a!k- - aj (VI.31)
5kBN k M + k Djk I Ik P,

where C* is a function of collision intergrals and

_ 1
a X 1 065 k, nkj (VI.32)aj~h 1+2v2 nj k; ,

is the contribution of the j th species to the mixture thermal conductivity assuming that the

internal molecular degrees of frredom are frozen. The {DT } required in Eq. (11.4) may be

found from [58]

Df- ,DjAKAT . (VI.33)
k

Thus the coefficients needed to incorporate the effects of thermal diffusion may be written in

terms of the individual species thermal conductivities and the binary diffusion coefficients.
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VII. ALGORITHMS FOR COUPLING MODELS OF PHYSICAL PHENOMENA

In the previous sections we separately discussed modelling the chemical kinetics, hydro-

dynamics, and diffusive transport processes which are cornerstones of detailed modelling of

combustion processes. In this section we describe some of the methods and problems associ-

ated with coupling the various representations of individual phenomena in a reactive flow calcu-

lation. We begin by contrasting fractional step and implicit coupling techniques and then give

an example of explicit coupling for shock and detonation calculations. The splitting methods

described are then extended to systems of stiff equations by describing the physical basis of the

fractional step coupling methods. Detailed examples are given showing how these general con-

cepts are applied. Adaptive gridding is introduced to deal with multiple space-scale difficulties.

Finally, the section is concluded with the solution to the gedanken flame experiment proposed

in Section Ill.

VII.A. Dealing with Multiple Timescales

In Section Ill we used several examples to show the types of general numerical considera-

tions which influence the accuracy and economics of numerical simulations. In practice, not

only inust we compute all the individual phenomena efficiently and accurately, bu! we must also

ensure that the interactions among the physical effects are accurately represented. When each

phenomenon varies slowly during a timestep, it is relatively easy to couple all of the distinct

phenomena together by the usual timestep splitting or fractional step approaches [73]. Then

the individual terms in the conservation equations are solved separately and sequentially for

each timestep. Thus at at time t, for example, the energy is advanced to the time (t + 8t) by

differencing and solving the thermal conduction term. Then this new value of the energy is

used as a starting value at time t to advance the energy by, for example, convection to (t + st).

This process is continued until all the terms are advanced. This approach works well until some

of the phenomena develop characteristic timescales shorter than the fractional timestep used in

the calculation. These phenomena have become stiff with respett to the long-time, slow
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behavior of the system.

In a coupled, transient, reactive hydrodynamics model, a number of situations occur for

which stiff phenomena must be integrated efficiently on timescales much longer than the shor-

test characteristic times. During the period of ignition delay in a mixture of hot combustion

gases, very fast chemical reactions are locally in a quasi-.static equilibrium between production

and loss effects. Thus the equations being solved are stiff, but the species densities and tem-

perature change slowly. In a slow, constant pressure flame problem, fast sound waves are stiff

on timescales of interest in the propagating flame. Other effects related to diffusion and radia-

tion can be stiff as well. When more than one interacting phenomenon is stiff, coupling these

effects together by any method which does not resolve the shortest timescales of the problem is

potentially subject to error. Whether this error is important or not depends on specific con-

siderations for each system.

Before deciding how to couple the representations of the individual phenomena into a

complete simulation model, we must first decide which time and space scales to resolve.

Whether or not a particular scale needs to be resolved depends both on the evolution of the

solutions and on the characteristic scales and rates of the constituent physical and chemical

effects. An example using the simple one-dimensional diffusion equation will help to make this

point clear. Consider the evolution equation for a temperature-like variable, T(x), such that

aOT(x,) 0 6 D OT(x, t)1at X D ax + s (,., 0, vi,. 1)
where S(xt) is an externally determined source or sink of"heat". A finite difference numerical

computation of this equation entails choosing a characteristic timestep 8t and space step 8x.

When 8 x2 the equation is stiff; the diffusion of gradients at the smallest scale resolved

in the calculation is faster than the temporal resolution allowed by the timestep. Whether or

not the timestep has to be reduced depends entirely on the actual solution at that instant of

time, on the source or coupling terms represented by S(x, ) and on any nonlinearities in the
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diffusion coefficient D. When S is smooth and well behaved, the profile T(x, 0 smoothes out

onto scales longer than 8x as part of its natural evolution. In these cases the profiles change

slowly because they are smooth even though the diffusion coefficient is large. The equation is

stiff in the sense that we do not want to compute with 8t 8x 2/D. We would like to use the

much longer computational step, 8t - L 2 D, where L is a characteristic scale length of varia-

tions in the profile T(x).

In the early stages of a problem where gradients may be steep and the profile may be

changing rapidly, short timesteps must be used to calculate the solution accurately. Thus the

equation is not stiff during these phases and presents no solution difficulty. If one attempts to

use the longer timestep during quick transient phases, the answers obtained are usually wrong.

Even in seemingly counter-example cases, the common sense axiom, "You can't simulate phy-

sical phenomena whose characteristic times are less than a timestep," applies. Therefore the

choice of phenomena which must be resolved accurately has a direct bearing on the cost of a

calculation.

Modelling combustion processes requires coupling algorithms which represent many dis-

tinct physical phenomena. Since the correct choice of the timestep determines the accuracy and

perhaps stability of the solution, the overriding concern is that, for the timestep chosen, one of

these processes must not produce a large change in the value of a variable to which another

process is sensitive. The chemical reactions must not result in an energy release which

increases the total energy in any cell by more than 10-20%. When the chemistry is in a sensi-

tive temperature regime, the hydrodynamics cannot be permitted to change the temperature by

too large an amount.

VII.A.1. The Fractional Step and Global Implicit Approaches

Two distinct approaches have evolved for numerically coupling all the pertinent

phenomena and their interactions when some or ail of the phenomena are stiff. The first of
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these approaches, global implicit differencing, has been described in Section V. The Gear

method [15] is an example of this approach for pure kinetics problems; the code developed by

Lund [31] is an example of a global implicit model in one dimension; and the one developed by

Schnack for MHD problems [74] is three-dimensional global implicit.

In one-dimensional magneto-hydrodynamics and plasma physics problems, the global

implicit approach has been used for many years (751 and has recently been adapted to detailed

reactive flow modelling [31,76]. The "Method of Lines" technique [77] uses forward-

differenced implicit solvers of ordinary differential equations (such as Gear) for spatially stiff as

well as temporally stiff problems. The fact that these algorithms need to use "artificial" or

numerical viscosity to stabilize shocks [33,48,77] indicates that consideration of temporal

stiffness alone is not sufficient to produce accurate solutions of important reactive gas dynamic

effects.

The second approach is the fractional step method described above. The individual terms,

including those which lead to the stiff behavior, are solved as independently and accurately as

possible and then coupled together. In this approach, stiffness in the individual governing

equations is handled asymptotically rather than implicity. The Selected Asymptotic Integration

Method [17] discussed below in Section IV is an example of this approach for kinetics problems

with very fast rates. The asymptotic slow flow algorithm [51] for hydrodynamic problems, for

which the sound speed is so fast that the pressure is essentially constant, has been discussed in

Section V. Timestep splitting techniques can still be used to couple independent stiff

phenomena whose individual stability is provided by asymptotic algorithms provided that the

overall algorithm ensures that values of the physical variables change slowly over a timestep.

There are tradeoffs between these two approaches. The implicit approach puts maximum

strain on the computer and minimal strain on the modeller. For this method, convergence of

the computed solutions is easy to test by improving the temporal and spatial resolution. Non-

convergence of arty particular calculation may be hard to spot since severe numerical damping
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has been introduced to maintain numerical stability and positivity. This damping changes the

desired profiles quantitatvely, although quickly detected qualitative errors are often smoothed

out. Solutions may be wrong yet stable.

In contrast, the fractional step approach puts minimal strain on the computer but demands

much more of the modeller. The convergence of the computed solutions is usually easy to test

with respect to spatial and temporal resolution, but situations do exist where reducing the

timestep can make an asymptotic treatment of a stiff phenomenon less accurate rather than

more accurate. This follows because the technique often exploits the disparity of timescales

between fast and slow phenomena. Non-convergence of any particular solution is sometimes

easier to spot in the asymptotic approach because the manner in which the solution degrades is

usually catastrophic. In kinetics calculations, lack of conservation of mass or atoms signals

inaccuracy rath-r clearly.

The fractional step approach often leads to more modular simulation models than those

generated using a global or block implicit approach. Hydrodynamics, transport, equation of

state calculations, and chemical kinetics are tied neatly into individual packages. Specialized

techniques for enhancing accuracy can be incorporated at each stage and for each physical

phenomenon being modelled separately. Since each phenomenon is treated as an independent

package, the full spectrum of numerical tricks can be applied.

At this point the pros and cons of the two approaches seem to roughly counterbalance;

they have been presented that way purposely. This apparent equity extends to most accuracy

criteria as well. If an interesting timescale is not resolved, neither solution method can give

detailed profiles of phenomena occurring on that scale. Similarly, to compute spatial gradients

accurately, these gradients must be resolved with enough spatial grid points in either type of

calculation.

The fact that the fractional step approach demands morc prior thought and effort is
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counterbalanced by the work that must be done to reduce the computational expense of using

the global implicit method. The need to reduce this calculational expense was the motivation

for the development of fractional step formulations. For example, solving a set of chemical

kinetics equations for M species requires inverting, perhaps repeatedly, a general matrix of size

M x M. This involves approximately M3 operations. In contrast, the selected asymptotic

approach (Section IV) to solving the kinetics equations generally scales as M or M 2.

VII.A.2. The Physical Basis of Fractional Step Coupling

As long as the timescales for the coupling mechanisms between two distinct physical

phenomena are resolved, the individual phenomena themselves can be treated separately. This

means that the stiff phenomena encountered, whether fluid dynamic or chemical kinetic, can be
treated as if in a state of dynamic equilibrium for which the lowest order solution is found by

setting a time derivative to zero. For chemical kinetics, the production and loss terms in Eq.

(IV.I) cancel to lowest order. For fluid dynamics, the divergence of the velocity field is given

algebraically rather than resulting from the time integration of a partial differential equation.

For diffusion equations, we similarly find that a partial differential equation in time is replaced

by a partial differential equation in the spatial variables.

In Section III we demonistrated that for some of the terms in Eqs. (I1.)-(01.12), asymp-

totic finite difference techniques can be both more efficient and accurate than implicit methods.

When physical phenomena are coupled, these same benefits may be gained. Again, the lowest

order asympto'ic solution is generally more accurate than the corresponding implicit algorithm.

The asymptotic solution is also far more stable than the explicit and centered finite difference

time integrations because these tend to go unstable when the timesteo for coupling is too large.

Therefore the fractional step methods, possibly employing asymptotic techniques, follow the

true solutions rather faithfully on all the relevant scales. When the spread of timescales is not

too large, or when global-integral conditions allow the detailed macroscopic model to "know"

the end result of short scale transient phenomena, detailed modelling and the coupling of the
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various scales is relatively easy.

Performing these multiple timescale calculations by fractional step methods requires not

only that the two scales of interest are separated, but also that there is an intermediate time

scale which can safely be used to patch the two solutions of different scale together. At this

intermediate scale, one of two conditions must be satisfied to effect a useful simplification. We

require that either 1) the macroscopic "outer" solutions and the microscopic "inner" solution

should both be accurate, or that 2) essentially nothing of importance to the macroscale occurs

on tthe intermediate scale. In stiff chemical kinetics integrations, as treated in Sections III and

IV, bot>. the explicit and asymptotic treatments are sufficiently accurate in the crossover region

that stiff phenomena on all scales can be followed accurately. In reactive shock and premixed

flame simulations, the second case prevails: neither the macroscopic calculation nor the micros-

copic calculation is capable of giving information accurately about the intermediate scale but

nothing of significance is assumed to happen there. From these considerations another general

rule of thumb for detailed modelling emerges: Keep close track on the changes in an detailed

structure of the physical variable profiles. Analyzing these changes is necessary because they

indicate whether explicitly coupled solutions are being integrated stably, whether asymptotically

coupled solutions work, and whether implicitly coupled solutions give the correct answer.

Although we are primarily considering transient, time dependent solutions of the reactive

flow equations, it is important to point out that there is an added degree of complexity when

one considers the approach to steady state of a dynamic physical system. We would like to take

such long timesteps that all the phemonena are stiff and yet the profiles do not change at all. In

this particular case a number of specialized techniques have been developed for chemical

kinetic, hydrodynamics, and diffusive transport problems based on equilibrium seeking con-

cepts. Global and block implicit techniques are particularly suited to more general problems in

this class.
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VII. A.3. Explicit Coupling of Fluid Dynamics and Chemical Kinetics

Perhaps the most important example of coupling two phenomena together using timestep

splitting is the coupling of hydrodynamic flow and heat release on the explicit timescale. The

reactive shock model [40] discussed below in Section VIII is an example of an explicitly cou-

pled reactive flow model in which the fluid motion is frozen while the chemical rate equations

are advanced using their own appropriate timestep. This can be done because the need to fol-

low shocks accurately requires the timestep to be smaller than the time it takes for a wave at

the local sound speed to cross the computational cells. On this short, explicit timescale, the

precise profile of energy release during the timestep is unimportant because in a timestep infor-

mation cannot propagate out of the immediate region. All of the energy deposited in the sys-

tem by sourc,'s or chemical reactions and all of the energy transported diffusively appears in the

energy Eq. (11.4) as local sources and sinks.

Using a new locally elevated pressure, which reflects the additional amount of energy

added, the explicit FCT algorithm [6,91 advances all the convective terms in Eqs. (11.)-(01.4).

At the end of a fluid integration step, the new internal energy is found from

1 2
E ± E- pv, (VIi.2)

where E, pv and p have been advanced by the hydrodynamics algorithm. Then the new tem-

perature, which is required for evaluation of chemical reaction rates and diffusion coefficients,

is found by iterating an equation of the form

= h(T{n})- NkAT (VII.3)

During a chemical integration step, T is found after the equations are solved for {11} and

it is assumed that the internal energy remains constant for each chemical timestep. This does

not mean that the temperature is constant, however. In addition to performing the asymptotic

integration of the stiff rate equations discussed in Section IV, the integrator also subcycles the

chemistry timestep as neLessary to resolve important, short-timescaie transients. l)uring these

subcycle steps the spcies densities change and therefore the temperature and reaction rates are
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permitted to change.

AWhen only one of a number of competing phenomena which must be coupled is stiff, the

explicit approach works well. In fact, straightforward explicit coupling works whenever tile

I ; : quantity being transferred from one form to another, in this case energy, changes by only a

small amount per timestep. In the reactive shock model described above, -20% changes in the

local energy density are allowed per timestep whether caused by chemical, hydrodynamic, or

diffusive effects. Large changes per timestep in the density of some or all of the species are

permitted as long as these changes do not appreciably affect the energy density.

VII. A.4 Asymptotic Coupling of Fluid Dynamics and Chemical Kinetics

Special care is required in coupling the various kinetic, diffusive, wave and convective

terms of Eqs. (11.1)-(11.4) when two or more distinct phenomena are stiff at the same time.

Since both chemistry and sound waves are usually stiff in the flame propagation problem, such

a difficulty arises in coupling the chemical heat release to the fluid dynamics. The overriding

principle as given above is always that the macroscopic variables should change by a controlled

amount (10-20%) in each timestep. In a flame problem, timescales are much longer than in a

shock or detonation problem. Thus diffusive effects are important and may border on being

stiff in regimes such as the flame front where fine resolution is needed.

Since the chemical energy released in a flame goes primarily into fluid expansion, there is

not as much of a local temperature increase as there would be if fluid dynamic expansion were

completely prohibited. Allowing all the heat to appear locally as temperature in a flame calcula-

tien results in unrealistic fluctuations in the physical variables. This particular coupling

difficulty is overcome by evaluating in each timestep the change in pressure which would occur

at constant enthalphy, but not allowing this energy to heat the fluid during the kinetics part of

the calculation. Unlike the shock case where the sound speed is slow, the pressure created in

flames due to energy release is quickly removed from the vicinity of its generation by fast but
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low amplitude sound waves. When the sound speed is smaller or the flame speed is larger, the

timestep must be reduced in order to insure that the flame propagates at substantially less than

one cell per timestep. The result is to reduce the hydrodynamic stiffness of the problem.

As an example of how this coupling is effected in the detailed model of the flame, we
describe the method used by Oran and Boris [781. This model uses a one-dimensional Lagran-

gian fluid dynamics module, ADINC [551, which is stable for timesteps much longer than the

Courant sound speed timestep limit. ADINC recuires consistency between local pressure as

computed from the hydrodynamics and the pressure arising out of changes in density and tem-

perature as constrained by the equation of state. The algorithm also assumes that pressure and

density are constant within each individual finite-difference cell and that the pfiysics is evolving

slowly enough for full communication across that cell to have occurred in a timestep. For very

long timesteps, ADINC reproduces the low order slow-flow asymptotic result in one-dimension,

but it is capable as well of following smooth, large amplitude sonic pulses.

In a flame calculation, hydrodynamic expansion and diffusive transport relieve the pres-

sure from the flame region as fast as it is generated. Thus thn. pressure stays effectively con-

stant. Small pressure fluctuations, -0 (v2/c,2), do exist and are just large enough to drive the

flows which reapportion the energy released by chemistry or transported by diffusion hydro-

dynamically. The chemistry step should be taken at constant pressure, but it may also be taken

at constant volume with the temperature held fixed if the profiles only change slowly per

timestep.

At the completion of the chemistry integration, the heat release is converted to an

effective pressure change at constant volume because the cell volume has been held fixed dur-

ing the chemical kinetics calculation. This pressure change is then used as an energy source

term for the hydrodynamics timestep to get tt. correct fluid expansion. In practice this is done

by modifying the cell entropies used in ADINC to reflect chemical heat release. At this point

thermal conduction and diffusion heat fluxes also contribute changes to the entropy. t
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The hydrodynamics algorithm governs the local expansions and compressions of the fluid

needed to bring the pressure back to a near constant value which is consistent with boundary

conditions and inertial hydrodynamic time-lags. The final temperature is evaluated after the

independent calculations are complete because the density in the flame front has decreased at

constant pressure.

This asymptotic timestep-split approach to coupling the several terms works here because

none of the macroscopic profiles is permitted to change extensively during a timestep. Even

though diffusion, chemistry and hydrodynamics may be all independently stiff, the flame front A

itself is not allowed to move more than a modest fraction of a cell per timestep. This necessary

restriction reappears throughout detailed modelling and permits the modeller to be relatively

cavalier about when and where many of the intermediate quantities are evaluated. As long as

all the stiff effects, whatever they are, are summed in a physically correct manner so that near

cancellation of large terms is permitted, the overall macroscopic calculations can be performed

on the long timescale. However, when fast transients occur and are important to a description

of the flow, the calculati,n must be performed on this timescale or the results will not be accu-

rate. During a prope; ,y resolved fast transient, the governing terms are not stiff because the

timesteps have to be short to ensure accuracy.

VII.A.5. Some Other Asymptotic Coupling Applications

There are many cases in which the details of the subscale processes may preclude the

direct solution of the macroscopic problem in the macroscale alone. In contrast to the example

given above, there are physical phenomena on fast timescales whose "dynamic equilibria" can-

not be entirely expressed in terms of approach to a quiescent, slowly varying macroscopic state.

Additional information is needed which cannot be entirely derived from the solution of the

slow timescale problem. To model these situations o' the longer scale, we must either solve

the short scale problem analytically or develop a calibrated, phenomenological prescription. The

resulting subscale model may then be coupled to the slowly varying macroscopic model at the
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point where the subscale physical phenomena are important. We shall describe several exam-

pies from this difficult category of reactive flow problems and propose possible ways of

approaching them.

Chemical Kinetics: The Thermodynamic Equilibrium Assumption

When complicated systems of chemical or atomic reactions and species are required to

describe a system, computations are greatly simplified if we can assume that thermodynamic

equilibrium exists. In chemical combustion, this allows us to define an equilibrium enthalpy for

the system which summarizes the fact that there is a Boltzmann distribution of states of the

molecules. We then define a chemical rate constant which summarizes the possible behavior of

an ensemble of molecules of one type which are in a Boltzmann distribution.

This simplifying assumption, however, is not always valid. We often find that a particular

rate will appear to vary in form from experiment to experiment because of non-equilibrium

conditions within the molecule. An energetic reaction, for example, may leave one of the pro-

ducts in an excited state which thus changes the likelihood that the product will undergo a

second reaction. Measurement of this second rate would show anomalous dependences on sys-

tem parameters which cannot be explained in tote context of the given reaction scheme with

standard rate formulae. Additiopal physics and hence degrees of freedom are needed. When

the system is mostly out of thermodynamic equilibrium, as in the case of a chemical laser, the

individual states of a molecule must be treated as separate secies. If just a few states are out

of equilibrium, it is possible to include a density dependen.e or a collisional de-excitation sub-

model in the macroscopic system to provide tht, needed information.

Propagation of a Reacting Shock

When the temperature and pressure conditions in a combustible mixture behind a shock

front are appropriate, the gas burns right behind the shock because the chemical induction time

will be very short. For example, a mixture of hydrogen and oxygen may release substantial
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energy in a microsecond or less when heated instantaneously to 2000°K. In a typical case in

which a shock is travelling at -10 5cm/sec, the very narrow burnfront may be separated from

the even narrower shock by less than 1 mm. In treating a macroscopic problem where the

shock traverses many meters of distance, it may be necessary to treat this shock-burnfront

region as a single gas dynamic discontinuity whose internal structure may be ignored on the

macroscale.

One would like to treat the interface as a discontinuity whose jump conditions are known

a priori. Then, as with the Rankine-Hugoniot relations for an ideal shock, the downstream and

the upstream conditions can be related unambiguously using the macroscopic continuity equa-

tions integrated across the jump. Unfortunately, more complex compound reactive flow discon-

tinuities such as a shock followed by a burnfront often require more information than is carried

in the macroscopic solution alone. Suppose a stable reaction product is formed only between

the shock and the burnfront. Then long after the interface has passed the density of this

species will depend on the structure of the discontinuity. Again, additional microscale informa-

tion is needed.

If we assume that a methodology exists to propagate an arbitrary discontinuity in the

macroscopic flow, the two distinct timescales can be separated. This asymptotic multi-timescale

separation is valid when the jump conditions across the compound discontinuity vary slowly as

functions of the evolving macroscopic upstream and downstream states. Then, given the condi-

tions in front of and behind the discontinuity, a localized short duration shock-burnfront simu-

lation can be performed to calculate the instantaneous rate of progress of the discontinuity and

the amount of heat released. These additional quantities can be coupled to the macroscopic cal-

culation. Thus physically correct variations of the upstream and downstream states can be com-

puted on the macroscale allowing the overall coupled calculalion to proceed.
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Propagation of a Flame Front

Since the flame speed is usually slow compared to the sound speed, flames also present

multiple timescale difficulties beyond the simple considerations of the fast kinetics and fluid

dynamics in a thin flame zone. In an enclosed chamber there are a number of natural resonant

frequencies for sound waves which occur at much higher frequency than we would like to

resolve. Again, asymptotic techniques can help in developing a model on the macroscale which

contains at least some of the effects of these sound waves. As long as these oscillations are

much higher in frequency than other phenomena of interest, it is possible to average over the

oscillations so that high frequency phase information is lost. Then the wavelength, frequency,
~and wave energy, all of which vary slowly, become the relevant macroscopic. quantities. Since

the reaction rates in the flame are generally increasing functions of temperature, the reactions

can be expected to increase more during the pressure peak of the wave than they diminish dur-

ing the troughs. Thus a net increase in flame speed might be expected from oscillations.

Turbulence

The most difficult multi-scale problems are those for which neither the slow, macroscopic

solution nor the high frequency submodel contain useful information about the intermediate

timescales, and yet important phenomena are taking place on these intermediate scales. Tur-

bulence, particularly reactive flow turbulence, is such a multiple timescale phenomenon. A dis-

cussion of various approaches to the detailed modelling of turbulence is reserved for Section X

of this paper.

VII.B. Dealing With Multiple Spacescales: Adaptive Gridding

In Section II we showed how the computational cost of a problem could be related to the

area which the calculation has to span in the logarithmic x - t space of Fig. 11.2. The larger the

span of space or timescales, the more expensive the calculation. Thus, reduclng either the

number of timesteps used to perform a calculation or the number of spatial grid points used in
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the spatial representation is effective in reducing the cost.

VII.B.1 The Current Status of Adaptive Gridding in Reactive Flows

The previous discussions in this section have stressed that any phenomenon which cannot

be resolved adequately cannot be calculated accurately. To minimize cost and maintain accu-

racy in temporally stiff integrations, we want to take loner timesteps only when key vailables

are changing relatively slowly on the timescales we wish to resolve. Stiff spatial problems,

those with localized steep gradients, must b' treated in an analogous way. In this case, how-

ever, the roles of time and space are interchanged and the numerical method used is called

"adaptive gridding." Small cell sizes are only used where the solution shows steep spatial gra-

dients in just the same spirit as short timesteps are used when the solution varies quickly. The

result is that the small cell sizes impose short timesteps due to the stability criterion which

relates 8x and 8 t.

Refined localized gridding techniques for boundary layers in steady state calculations have

been used for many years [79]. More recently, fluid dynamic calculations have been developed

in which the locally adapted grid moves with the fluid regions requiring fine resolution.

Detailed modelling of coupled chemical kinetic-fluid dynamic systems is an even more recent

discipline and requires more general approaches to the multiscale problem than have previously

been attempted. In recent efforts at numerical modelling of unsteady flame propagation, adap-

tive gridding procedures have depended on an ad hoc criterion related to local temperature gra-

dients to determine where the finely spaced zones are required [78,80,81]. Currently more

general formalisms are being developed for placing the adaptive grid noaes according to a varia-

tional finite element formuk ion. For example, a variational principle may be established to

minimize an error defined for the system of equations being solved. The work to date on this

approach has also concentrated on model problems but the results are encouraging [821. How-

ever, the generalization of finite element approaches to a full reactive flow combustion problem

seems to be prohibitively expensive.
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VII.B.2. Adaptive Gridding in Eulerian and Lagrangian Representations

The methodology of adaptive gridding in the Eulerian and the Lagrangian representations

is intrinsically different. In Eulerian calculations, a continuous sliding rezone method can be

used where the cell interfaces and the fluid move. Lagrangian calculations require discontinu-

ous injection and removal of cell interfaces.

As an example of an Eulerian case consider the reactive shock model [40] for which a

general adaptive gridding procedure was developed which takes advantage of a sliding rezone

capability. Thus the calculation automatically follows a shock front for which enhanced resolu-

tion is required. The region immediately around the shock front and for predetermined dis-

tances on each side is gridded with fine, evenly spaced cells. The fine spacing transitions

smoothly into the more coarsely resolved region. As the shock moves along the length of the

tube, the finely-spaced region is programmed to move with it and may reflect off the boundary

wall. The condition on the acceleration,

Ar - maximum,

was found to be adequate for locating the shock front, where P is the pressure, r is a general-

ized position coordinate, and fi is an average mass density. In principle there can be any

number of finely-spaced regions.

In a Lagrangian fluid calculation, adaptive gridding is still necessary but the procedure is

more complicated than in the Eulerian case. While the Lagrangian framework itself provides

some natural concentration of grid points in regions where the fluid is compressing, there are

situations such as a flame where fine resolution is required but the fluid is expanding. A funda-

mental problem exists in that it is not obvious how to arbitrarily concentrate grid points in a

Lagrangian calculation and still maintain the non-diffusive advantages of using this representa-

tion. For the example of a flame front, the region requiring the fine resolution actually pro-

pagates through the fluid rather than with it. Forms of continuous re-gridding applied to

91



ORAN AND BORIS

Eulerian calculations involve algorithms which are numerically diffusive, and to some extent

the grid always moves through the fluid.

In order to avoid the problems of a diffusive grid in a Lagrangian calculation, a method

has been devised for which existing computational cells can be subdivided or merged. The

addition or subtraction of one or more cell interfaces can be effected without causing numerical

diffusion through any of the already existing interfaces. Criteria are programmed so that this

process is done automatically in a way which adapts to the resolution needs of the evolving

solution. The bookkeeping for this method is complicated since the number of grid points

changes and the location in computer memory of data referring to a given physical point in

space also changes as cells are subdivided or removed. This method is currently being used in

transient flame simulations [78].

VII.B.3. The Future of Adaptive Gridding

In most finite difference and finite element calculations where a time evolution equation is

being solved, the timestep chosen for the calculation, 81, does not vary as a function of posi-

tion. Each grid point is integrated in lock step and hence the concept of a time level is well

defined. However, the timestep is usually small everywhere using a single 8t because it usually

has to be small someplace on the grid. If each cell could be integrated using a different

timestep, the total number of point-steps for the calculation could be reduced. Thus in a flame

calculation, small space and time cells could be clustered only along the advancing flame front.

Although having a 81 that depends on location reduces the number of point-steps

required, a serious premium is paid because of the great computational complexity introduced.

One might imagine using an evolving triangular grid in x-t space. Then the variable conncc-

tivity of the grid could be used to allow for initiation and termination of cell interfaces as well

as the greatly disparate timesteps in adjacent cells. Such an approach would incorporate many

of the ideas and algorithms for dealing with relativistic fluids and plasmas developed earlier and

92



NRL MEMORANDUM REPORT 4371

undoubtedly will be tried eventually.

There is another, perhaps simpler, adaptive gridding option which would reduce the total

number of point-steps needed for the calculation much further than the variable 8t-8x

approach described above. This approach depends intrinsically on there being two distinct space

scales and is called "intermittent embedding' of an adaptive grid. Thus a finely gridded region

is embedded in the macroscopic calculation at intermittent timesteps. This is done often

enough to update the properties of the finely spaced region. These properties (jump conditions,

flame speeds, etc.) are then used as interior boundary conditions for the coarsely spaced

macroscopic region.

Since the region which requires resolution is only resolved and followed during a small

fraction of the time, a method of connecting and disconnecting this portion of the gria must

then be developed. Furthermore, when the fine grid for the flame front is disconnected, a

method for retaining the discontinuity in the coarsely resolved calculation will have to be

found. This latter requirement is clearly problem dependent. Thus, for example, a shock will

have different jump and conservation conditions than a flame front.

VII.C. Conclusion to the Gedanken Flame Calculation

Using the information discussed so far in this section and in Section V, we now return to

the gedanken flame experiment described in Section II with the idea of modifying the numeri-

cal methods in order to reduce the computational cost. The problem is to calculate the propa-

gation of a flame front as it crosses a one meter tube using a one-dimensional geometry and

given a fixed, detailed chemical reaction rate scheme.

First, we recognize that we are interested in calculating a flame front mo',ing al less than

the local sound speed. Thus either a slow flow approximation or any method which treats pres-

sure implicitly would eliminate the sound speed criterion on the timestep. By using the asymp-

totic slow flow technique described in Section V, and still assuming a uniform grid spacing, the
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number of point-steps is reduced from 1014 to 10"1. Thus the computational time required is

reduced from 3000 to 3 years!

But this is still atrocious, and we must now face the problem of eliminating unnecessary

grid points by adaptive gridding algorithms as discussed above. Suppose 10O cells of I cm

letgth are used and the region surrounding the flame front is finely gridded with 100 additional

cells of i0 - 3 cm length. The timestep is still governed by the smallest cells, but by now only

200 cells are needed rather than 105. The saving, about a factor of 500, reduces the computa-

tional time to 2 x 108 point-steps, or about two days.

Finally, consider performing this calculation using the possible, but as yet unexploited,

technique of adaptive intermittent gridding, Now assume that 100 cells are needed to resolve

the flame zone. Further, 100 short timesteps are enough to resolve changes in the flame zone

brought about by the relatively slowly changing, outer boundary cond',ions. During the imbed-

ded calculation, the flame front moves only 10 of the fine zones. This is sufficient to determine

flame speed and boundary conditions to be used in the coarsely spaced calculation. The imbed-

ded calculation may be done once in each large cell. Thus a total of 100 + (100 x 10) - 1100

seconds of computational time is required for the large scale simulation.

This example has illustrated the importance of using the appropriate algorithm as con-

strained by considerations of the actual problem that must be resolved. It has further illus-

trated how much may be accomplished by developing the methods of adaptive gridding. One

point that has not been mentioned, however, is that much of the cost of a detailed reactive flow

calculation is in the integration of the ordinary differential equations describing the chemical

kinetics. Using the latest asymptotic techniques, the picture painted above improves by a factor

of two to four. But further improvements in the integration time of ordinary differential equa-

tions without sacrificing accuracy is certainly an area where development is needed.
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VIII. SUPERSONIC REACTIVE FLOWS

In detailed modelling of supersonic reactive flows, we face a number of difficulties which

differ from those encoLntered in modelling the subsonic reactive flows described below in Sec-

tion IX. These difficulties arise because we must solve continuity-type equations when discon-

tinuities and sharp gradients are present. We also have found that the fluid dynamics portion of

the calculation must be extremely accurate because the chemical reaction rates may vary

strongly at high temperatures. Thus errors in the calculated energy release may be very sensi-

tive to relatively small fluctuations in calculated temperatures.

The calculational time-step for the fluid dynamics part of the calculation is usually con-

strained by the local Courant condition in the vicinity of any shocks which form. This limit is

approximately equal to the speed of sound in the material divided by the local cell spacing.

Unlike the subsonic flows, we cannot average out small scale sound waves by taking advantage

of any of the smoothing effects due to a virtually constant pressure. Generally it is these sound

waves and their interactions we wish to follow.

Every numerical technique for treating shocks and discontinuities has its own set of

advantages and problems, and most of these center around accuracy and generalizability of the

method. Thus some specific problems may be solved with great accuracy by a specialized

method, but there are usually sevei'e limitations and unanswered questions regarding one's abil-

ity to generalize the method. In order to construct accurate detailed models of supersonic reac-

tive flows, the algorithms employed must be versatile enough to include a broad range of physi-

cal and chemical processes. We must be able to solve the complete set of Eqs. (11.)-(01.12)

when discontinuities are present. We must be able to couple complicated finite rate chernis-

tries, diffusive transport, and variable initial conditions, boundary conditions, and equations of

state to multi-dimensional equations including the compression and advection terms. To date,

finite difference solutions of the conservation equations have proven the ni'st versatile because

they are most easily extended to multi-dimensions and most easily generalized to incorporate
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diffusive and chemical processes.

In this section, we describe a few of the many calculations reported in the literature. This

is by no means meant to represent an exhaustive summary of all the work performed. The first

set of examples use a singl., step reaction rate and prescribed energy release. The section is

concluded with a description of a detailed reactive sh.xk model and some calculations which

have been made using it. In all of the specific examples discussed in this section, we stress of

first testing the method in well-understood limits.

VIII.A. Supersonic FlQws with a Model Energy Release

Obtained adequate resolution is a problem that confronts anyone attempting to model

supersonic reactive flows numerically. We must balance what our purses allow us to calculate

against what we know we could calculate given more resources. Because of this resolution

problem, there have been very few research groups actually calculating supersonic reactive flows

and most of these groups have restricted their consideration to the fluid dynamic flow with a

simple model for energy release. Calculations perforrmed using a model energy release do, in

fact, tell us a lot about the way in which added energy interacts with the fluid flow. Such calcu-

lations have helped us to understand a number of curiou% phenomena concerning, for example,

the stability of a detonation or the properties of blast wvw.s.

In the remainder of Section VIII, we describe the %ork of several researchers who have

numerically modelled supersonic reactive flows. fhese are excellent examples of the applica-

tion of numerical methods in that all of these exampleb, the authors have gone to great lengths

to calibrate and test their models against both analytic theory and other independent calcula-

(ions. This is the important first step which gives them both confidenc,. in the numerical solu-

tion and -n understanding of the limits of the model. The authors then extend their calcula-

tions to regimes for which there is no analytic solution or no previously attempted calculation.
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Perhaps the classic supersonic calculations with a simple energy release were related to the

results of the linearized stability analysis performed by Erpenbeck [831 on the steady state solu-

tion of a three-dimensional cartesian detonation. Specifically, Erpenbeck's analysis was for an

overdriven detonation in a material described by a polytropic-gas equation of state and for a

heat release that could be described by one reaction with an Arrhenius type rate. Diffusive

transport effects were, of necessity, neglected. Thus the problem was analyzed in terms of

several parameters which included a heat release Q, an activation energy, E*, and the degree of

overdrive of the detonation, f, which relates the piston velocity to the Chapman-Jouguet velo-

city characteristic of the gas. Erpenbeck concluded that the steady state solution was unstable

to infinitesimal three-dimensional disturbances over a range of finite transVerse wavelengths

and also to one-dimensional, longitudini, perturbations. This analysis indicated that the part of

the parameter range for which instability can occur could represent a real systems.

Such a stability analysis says nothing about the long term evolution of the unstable flow

which it predicts. This kind of information must be obtained from numerical solutions of the
r:3

time-dependent equations describing the system. Fickett and Wood [84] have studied the one-

dimensional problem for several sets of parameters around the predicted stability boundary

(Fig. VIII.l). Their calculations use the method of characteristics in which shocks are treated

as jump discontinuities and diffusive transport effects are neglected. The geometry is cartesian

so that the system may be described as a semi-infinite slab of initially unreacted material which

is bounded at one edge by a piston, or a moveable plane. An overdriven shock is generated by

moving the piston at a velocity which finally becomes constant at a value greater that the

Chapman-Jouguet velocity of the material.

The results of these calculations for fixed Q and varying E* and f agreed very well with

the predictions of the theoretical analysis. The numerical simulations showed that in the stable

cases, the time-dependent solution eventually approached the steady solution. In the unstable

cases, the driving piston prevented the detonations from dying out, so that oscillations in the
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shock front pressure were predicted. These oscillations grew rapidly and reached a peak max-

imum of about 50% about the stable solution. After a long time into the calculation, the

observed fluctuations in the amplitude of the oscillations may have been caused by earlier oscil-

lations which were reflected ftom the piston and then overtook the shock front. (In real deto-

nation experiments, it has been observed that the oscillations may be so large that the detona-

tion periodically dies out and then re-ignites. In these cases diffusive transport effects might be

very important.)

Time-dependent calculations testing the Erpenbeck predictions have also been performed

by Mader [85] using a finite difference method. In this extensive study, Mader compared solu-

tions for which he 1) used different numerical methods, 2) varied the equation of state, and 3)

varied the dimensionality of the disturbances ;o that both longitudinal and transverse perturba-
~tions were allowed.

Figure VII.2 shows the results Mader obtained for the parameters (Q - 50, f - 1.6,

E* = 50). The calculations were performed with a one-dimensional Lagrangian code and two-

dimensional Eulerian and Lagrangian cudes and then compared to the results of Fickett and

Wood. The long-time results were, in fact, independent of both methods of solution and of

how the pertubation was initiated. In general, Mader's calculations verified the results of

Erpenbeck for both longitudinal and transverse perturbations.

After having made these tests of his numerical metiod, Mader then studied the effects of

such perturbations on overdriven detonations in nitromethane and liquid TNT. For these

cases, the detonations showed the same stability properties to both transverse and longitudinal

perturbations as they did to longitudinal perturbations alone. That is. two-dimensional pertur-

bations in these materials did not grow, but decayed into one-dimensionally perturbed flows.

As in the ideal gas case, a sufficient amount of overdrive stabilizes the detonaitions.

The numerical models developed and tested for detonation stability problems are now
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used extersively to study detonations in condensed materials [861. But the instability calcula-

tions themselves are extremely important because they show that real detonations of both con-

densed and gaseous materials may exhibit this oscillatory behavior which cannot be described

by steady-state Chapman-Jouguet theory. Furthermore, as Mader has shown, the details of the

chemical kinetics and equations of state are crucial to the stability behavior. Both transverse

and longitudinal disturbances have been observed in real gas detonations [871. TI ,z distur-

bances have been made to disappear by sufficiently increasing the amount of overdrive.

Observed longitudinal disturbances may be so large that the detonation dies out and then starts

again in a periodic way.

Taki and Fujiwara [88] consider gas phase detonations in two spatial dimensions. They

employ a simple induction time model developed by Korobeinikov, et al. [891 to approximate

the chemical induction and heat release phases of reacting oxy-hydrogen systems. Two scalar

parameters are defined which are convected with the fluid. One of these, the induction time

parameter , records at the instantaneous local temperature and density the fraction of a chemi-

cal induction time remaining before energy begins to be released. The second parameter

records the fractional burnup of the fie, and hence the local heat release after a full induction

time for the chemical reaction. Ca!cula, ions f transverse instability of the detonation front

were carried to their full nonlinear limit using an explicit irst order method due to Van Leer

[90]. Good agreement was obtained with equilibrium triple shock spacings measured by

Strehlow, et al. [911 for argon and helium diluted oxy-hydrogen systems.

Another set of detonation calculations with a model energy release has been made by

Phillips [921 in an effort to understand fundamental properties of unconfined vapor cloud

explosions. The questions of importance here are: 1) how does an explosion develop in a vapor

cloud, 2) what are the characteristics of the blast wave which propagates beyond the limit of the

vapor cloud, and 3) what are the effects of obstacles which cause asymmetries in the explo-4I
sions. Quantitative answers to these questions would increase our understanding of and ability
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to prevent accidental explosions of flammable materials [931.

In order to begin to address these problems, Phillips developed a one-dimensional spheri-

cally symmetrical model based on the FCT algorithms discussed in Section V. A soturce term

was used to describe energy releases which were either instantaneous (at t = 0) or representa-

tive of a detonation in which all the heat is released when a prescribed ignition temperature was

reai,hed. Figure VIII.3 shows comparisons between a test calculation and the self-similar solu-

tion by Taylor [941. The theoretical and calculated pressures are in fact very similar, although

.tthe calculated pressure at the detonation front does not reach the theoretical value. This value

would be improved substantially by increasing the resolution at the detonation front.

Calculations of the decay of a blast wave after detonation of a vapor cloud are shown in

Figs. VIIIA, 5, and 6. The cloud is assumed to be spherical, in a uniform atmosphere, and

ignited at the center. The gas is assumed to be a typical hydrocarbon-air mixture which has a

final temperature of 1900'K after combustion. Detonation starts immediately on ignition and

ends at the edge of the cloud. Spreading of the peak pressures are again observed, as in the

test case shown above. The curve in Fig. VIlla marked 0.0115 sec shows all the mass in the

system moving outwards so that the central pressure and density are reduced. Figure VIII.5

shows that at a later time there is an implosion and the pressure at the center jumps to 4 atmo-

spheres from a minimum of 0.095 atmospheres. The 4 atm value would increase if there were

greater resolution allowed at the origin. Figure VIII.6 summarizes the time history of the pres-

sure at the center of the implosion. The early peak at about 0.01 seconds in believed to be

spurious and resulting from initial numerical transients.

VIII.B Supersonic Flows with Detailed Chemistry

The transonic flow over a re-entering nose cone is one type of reactive flow problem that

has been modelled successfully. In this problem, the mean free path is long but the fluid

approximation is still valid. Furthermore, real diffusion effects are large enough so that numer-
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ical diffusion is not a problem. Widhopf and Victoria [951 have developed a two-dimensional

model which uses the explicit leapfrog/Dufort-Frankel scheme for the partial derivatives. An

implicit formulation is used for the seven species, six reaction detailed chemistry. A major

conclusion to be drawn from this early success is that fast chemical reactions can be handled

independently of the slower timestep hydrodynamics provided variations in energy due to

chemical reactions are small.

The model developed by Oran, Young, and Bo.is [401 was designed to handle the large

local energy releases typical of combusion. The model includes the effects of a complex chemi-

cal reaction scheme as well as accurate diffusive transport properties. The model was designed

to study transient phenomena, the way in which a perturbation on the system alters the steady

state, the effects of non-ideality of gases, and the way in which the release of chemical energy

4 jalters hydrodynamic flow. This model is based on a number of the numerical algorithms dis-

cussed in previous sections. These include

1) Flux-Corrected Transport (Section V) to treat discontinuities accurately with minimal

numerical diffusion and no artificial viscosity,

2) A sliding rezone (Section VIII) which inserts finely gridded regions where resolution

is required,

3) The Selected Asymptotic Method [171 for solving sets of stiff ordinary differential

equations (Section IV),

4) Time-step splitting (Section VII), and

5) The expansion method for diffusion fluxes (Section VI).

Simulations have been performed modelling a shock tube in which a diaphragm is burst at

the onset of the calculation. Typical initial conditions are shown in Fig. VIII.7. The calculation

is started by assuming that the temperature has equilibrated across a diaphragm which separates

regions of differing pressure and composition. The relatively simple H2-0 2 combustion system

has been chosen as the reactive gas mixture and is described by about forty chemical reactions.
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Then the model calculates as a function of time and space the evolution of the temperature,

and the densities of eight reacting species H2, 02, H20, H, 0, OH, HO2, H20 2 and any inert

materials present.

The calculation outlined above was first tested against the results obtained from a solution
of the Rankine-Hugoniot equations for an ideal gas in cartesian geometry with no diffusive

transport or chemical reactions occuring. Such a solution is given in Table VIII.1, and some

comparisons with the calculation are given in Table VIII.2.

r

The model was then used to study a shock propagating in a reactive medium. Two cases

are described below: one in which the chemical energy is relea~ed quickly enough to alter the

properties of the shock, and another in which the shock is reflected from a rigid wall. At the

onset of the calculation, the diaphragm is removed and the helium driver fluid begins to move

into the low density region. The five distinct regions described by Table VIII.1 are clearly

differentiated at about - I x 1075 sec. By then the formation of a shock front, contact discon-

tinuity, and expansion fan are clear. By about 2 x 10- 5 sec the fluid flow 14as settled down and

looks very much like the ideal pattern. Until enough time has elapsed so that energy release is

substantial, the fluid motion is relatively unaffected by the chemistry.

Figure VIII.8 shows the temperature profile after - 1.34 x 1074 sec. At this time the

shock front is located at 40 cm down the tube. The different regions are clearly separated in

the calculation and the energy released by chemical reactions has noticeable effects on both the

shock speed and the shape of the shocked region. The dashed line marks the corresponding

temperature profile for the ideal non-reacting fluid calculation. An increase in the temperature

at the back of the shocked region, where most of the chemical reactions have occurred, is

clearly visible. The calculation also shows a broadening of the region surrounding the contact

discontinuity due to diffusion of the helium driver gas into the reactive mixture. The effect of

this temperature decrease is apparent in Figs. V1I1.9 and V!ll.iG,
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Figure VIII.9 shows the total densities corresponding to the temperatures shown in Fig.

VIII.8. As one might expect, the high temperature regime corresponds to a low density regime

in the shocked region. We note that both temperature and total density can vary by as much as

a factor of two in the shocked region, whereas the pressure variation is at most about 30%.

The calculated fluid velocity has not been shown since it varies at most by 10% from the solu-

tions presented in Table VIII. 1.

Figure VIII.10 shows the number density of H2 and 02, the chain centers, and the product

H20 as a function of location along the length of the tube at 1.47 x 10-4 sec. If we were look-

ing at a case where the temperature were uniform across the high temperature region (i.e.,

large amounts of diluent present), we would exoect the H20 peak to be in front of the OH

peak. In such a case the spatial difference between the peaks would be analogous to the tem-

poral separation between peak OH formation which precedes the maximum product formation

in a homogeneous reacting gas mixture. Looking for this effect in the highly exothermic case

we are studying can be misleading: here we have to consider both kinetic and fluid dynamic

effects. The high OH densities indicate that combustion is occurring between about 36 and 38

cm. This is in agreement with the high temperatures shown in Fig. VIII.9. The unreacted H2

and 02 near 35 cm is in the cool region near the contact discontinuity into which helium has

diffused.

The second part of the problem discussed is that of a shock reflected off of a rigid wall.

Many shock tube experiments are designed to take advantage of the relatively uniform regime

near the wall behind the reflected shock. The temperature and density are further elevated

here and the fluid velocity is essentially zero. Thus them¢ is a pOuod of relativc calm that can

be used to watch reactions develop. We look at the same shock as described above and set the

wall at 50 cm.

For this problem the results are presented differently. It is assumed that there is a "hole'

1 cm from the reflection wall, at 49 cm, from which the fluid may be monitored. Figure
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VIII. II shows how the temperature at this location changes as a function of time. When the

shc ek passes 49 cm, the temperature jumps to about 23000K. The temperature stays at this

value until the reflected shock passes over this position again. Then the temperature increases

to about 35000K and the pressures increases by a factor of about three. These increases are

consistent with what is expected from a solution of the jump conditions for an ideal shock

reflected from a wall. The calculated fluid velocity behind the reflected shock is not exactly

zero, but it is several orders of magni!ude less than the - 105 cm/sec characteristic of the fluid

before it is reflected from the wall. As described above, these finite amplitude sound waves,

generated in the process of reflection, decrease in amplitude as this region expands.

Once the reflected shock reaches the low temperature region behind the original contact

discontinuity, a large amplitude wave will propagate back to the wall and modify the uniform

pressure and temperature region. In the case described above, we have a region of low tem-

perature (60°K), high density material (1.6 x iO-4 g/cm 3) moving into a region of high tem-

perature (2300°K), and lower density (1.0 x 10-4 g/cm 3). For a long shock tube, where the

shocked region has spread out over a large distance, there can be a substantial time when the

reflected high temperature region persists. Then, except for the small finite amplitude sound

waves which are present even in experimental situations, the medium can be considered at rest.

Recently this model has been extended to two-dimensional detonation calculations [96).

In order to avoid the expense of integrating a large number of ordinary differential equations

representing the chemical kinetics on every spatial grid point, an induction parameter is defined.

This quantity is convected with the fluid and tells how long a fluid element has been heated.

When the fluid element has been heated for the chemical induction time of the material,

energy is released. This model was used to study detonations in hydrogen-air and methane-air

systems and was calibrated against a one-dimensional calculations which used a full detailed

chemical reaction scheme.
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Table VIII. 1. Ideal Shock Solution

Region 1 2 3 4 5
Pressure (dynes/cm2) 1.056x 107 Z 1.951x 101 1.951x 101 1.056x 104
Density (g/cm3) 1.076x10 3- 3  1.557x10 - 4  2.314x10 - 1 5.118x10-6

Velocity (cm/sec) 0.0 t 1.675x 105  1.675x 105  0.0
Temperature (*K) 300 60.3 1216 300.0L..
Sound Speed (cm/sec) 1.016x o 0 4.571x 104 1.089x 10 5.388x 104
Molecular Weight (amu) 4.0 < 4.00 12.0 12.0
Gamma 1.667 1 1.667 1.40 1.40

Shock front velocity 1.051x 105 cm/sec
Contact discontinuity velocity 1.675X 10'
Rarefaction foot velocity 1.218X 105
Rarefaction front velocity -I.016X 10'
Mach number 4.00

I

I
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Table VIII.2. Shock Front Position

TIME (sec) SIMULATION ANALYTIC DIFFERENCE
(cm) (cm) A

0 9.5 ± .025 cm
1.114x10-5  12.15 11.88 .35
2.2313 14.80 14.43 .37
3.550 17.43 17.07 .36
4.822 20.07 19.80 .27
6.101 22.68 22.52 .16
7.305 25.27 25.09 .22
8.446 27.82 27.52 .30
9.558 30.27 29.89 .58
1.067x 10- 4  33.09 32.25 .34
1.181 35.71 34.70 .31

VSF 2.1336X 105 cm/sec
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( IX. SUBSONIC REACTIVE FLOWS

Subsonic reactive flows, in which characteristic flow velocities of interest are very much

less than the speed of sound in the reactive medium, are usually treated computationally by

either solving the pressure equation implicitly or treating the pressure as constant. A number

of approaches to this problem have been discussed in Section V. In the past few years a

number of one-dimensional flame models have been developed. Each one seems to employ a

different numerical method or combination of methods at various levels of approximation.

Computational efficiency and cost may vary by at least an order of magnitude. And all of the

techniques reported appear to give answers which arc in reasonable agreement with existing

experimental observations.

The work described in this section is not intended as a review of all of the literature on

detailed mout!1ing of laminar flames. Instead, as in Section VIII, we have selected a number of

examples of calculations which show how a detailed model may be used and what specifically

can be unraveled from the reams of computer output obtained. Thus this section has been

divided into four parts. First we summarize the work of Kooker (76] who studied a hydro-

dynamic effect, acoustic oscillations generated by a confined premixed flame. The discussion

then proceeds to a number of examples by Heimerl and Coffee [97], Warnatz [98], Tsatsaronis

[991, and Westbrook and Dryer 11001 who used detailed models to extend knowledge of chemi-

cal kinetics. The work of Oran and Boris [781 is discussed as an example of how detailed

modelling may be used to study and expand the validity of an analytic model. All of the

above-mentioned discussions use o'ie-dimensional models. The status of two-dimensional

l.etailed models is then discussed and examples are given from the work of Kansa 11011, Butler

and O'Rourke 1021 and Jones and Boris 1591.

IX.A. Acoustic Oscillations in Confined Flames

It is known that a confining geometry influences the behavior of a combustion system
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apart from any chemical effects occurring at the walls. This problem was studied by Kooker

[761 using a detailed one-dimensional model of a homogeneous mixture of an 03-02 gas. The

calculation simulated a closed chamber heated at one end for a fixed amount of time until a

flame was ignited and began to propagate across the system.

Figure IX.1 [761 shows simultaneous profiles of temperature, atomic oxygen mass frac-

tion, and density distributions for a flame propagating in 20 mole % 03 in 02. Comparing Figs.

IX.IA and B shows that there is a pronounced maximum in the atomic oxygen just downstream

of the strongest temperature gradient. This was attributed to the fact that the flame speed is

fast compared to the recombination rate of atomic oxygen, and thus a reservoir is formed

behind the flamefront. The densities of atomic oxygen are, in fact, many orders of magnitude

higher than those that would be computed from an equilibrium thermodynamic calculation.

Due to the confinement, the density and temperature increase ahead of the flame. This

compression of the reactants results in an increase of the rate of energy release, which causes a

steepening of the temperature gradients at the flamefront, and results in a net acceleration of

the flame speed.

Figures IX.2A, B, and C show, respectively, the position of the flamefront, the flame

velocity (as seen by an inertial observer), and the flame velocity minus the local gas velocity at

the "foot" of the flame (an estimate for the fundamental burning velocity) for the time interval

of Fig. IX.1. The prediction is a pulsating laminar flame which exhibits significant velocity vari-

ation within the range 300-900 cm/sec. The oscillation appears to be a complicated function of

several modes whose dominant frequency agrees with that predicted by the acoustic analysis of

Jost [103,1041.

In this example, the origin of the flame oscillation occurs in the heating phase before igni-

tion. Heat transfer through one boundary excites small ampliude acoustic standing waves in

the chamber as the pressure increases are equilibrated. These waves are amplified and driven

by the flame as it propagates away from the heated boundary. 'n the case described, the
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ignition time is longer than the acoustic transit time for the system. In other cases, where the

ignition time is on the order of the acoustic travel time in the chamber, the onset of oscillations

is delayed until the flame propagates some distance into the chamber.

Because of the non-linear coupling between the equations governing conservation of

momentum and energy, confined combustion is basically oscillatory. Combustion chamber

oscillations are known to occur in systems such as ramjets, turbo-jet afterburners, industrial fur-

naces, rocket engines, and guns. In practice, the amplitude range of the oscillations may be

small due to system losses. Kooker's work does point out that an analysis of aiiy confined or

partially confined combustion based on assumptions which preclude oscillatory behavior (e.g.,

spatially uniform pressure) could lead to predictions with indeterminant errors..

IX.B. Chemical Kinetic Studies

The use of one-dimensional detailed reactive L'1w models to examine chemical kinetic

mechanisms has been demonstrated by the extensive wo.ks of Westbrook and Dryer [1001,

Heimerl and Coffee [971, Warnatz [981, Galant [1051, and many others. Model calculations

have been compared to measured flame velocities and density profiles of major and minor

species behind a flamefront. We will describe some of this work and illustrate how the tech-

niques have been applied to successively more complicated chemical systems.

The simplest chemical system studied with one-dimensional models has been 03-02

[76,106,107). Above we described Kooker's analysis of the acoustic coupling between energy

released in ozone combustion and standing waves in an enclosed chamber. Here we are con-

cerned with the validity and accuracy of the proposed kinetic mechanism and whether it repro-

duces laminar flame data. Calculations may be compared to the experimental studies of ozone

burning which have been performed by Streng and Grosse [108]. From their measurements at

one atmosphere of pressure, they derived the empirical expression for the burning velocity,

, -- 563 X(0,) - 88.8 cm
sec
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where X(03) is the mole fraction of 03 initially in the mixture. Measured values of Vb at

X(03) less than 0.3 were less accurate than those at higher values of X(03) and there were no

measurements of individual species concentrations.

Figure IX.3 shows a comparison between the measurements and the calculations by

Heimerl and Coffee [97] and Warnatz [981. Each calculation used notably different diffusive

transport and chemical rate coefficients, although they predicted very similar flame velocities.

Thus even in the simplest realistic scenario, we are faced with ambiguities concerning the

correct set of the input data. The 03-02 system is described by three sets of forward and

reverse reactions:

3 + M + 02 + M, kl, k-

0+03 02 + 02, k 2, k-2

F +0+M+- 0 2 +M, k3, k-,

where the k,k- refer to the rate of the ilh forward and reverse reaction, respectively. Heimerl

and Coffee have shown that the difference between their calculation and Warnatz' calculation

resides in the authors' choice of kl and k2. Figure IX.4 shows ratios of the values the input

parameters used by Heimerl and Coffee to those of Warnatz. The ratio of kl values drops from

close to unity at 1000*K to about 0.4 at 2400°K, while the ratio of k2 values rises from about

1.5 to 1.8 over the same temperature range. Further studies indicated that for the case where

X(0 3) - 1.0, k, and k2 have about an equal effect on the burning velocity, and in going from

one model to another, the high temperature values of kl and k2 change in opposite directions.

The agreement between calculations of flame speed is the product of a fortuitous cancellation of

effects.

There are, however, substantial differences in model predictions of both temperature and

atomic oxygen densities for this same value of X(03). These are shown in Figs. IX.5.

Predicted atomic oxygen densities vary by as much, as a factor of two and predicted tempera-
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tures by about 350'K. As can be seen from the dashed line, which indicate Heimerl's calcula-

tions when Warnatz' values of ki and k2 are used, there are smaller differences which may be

attributed either to the sum of the differences in input or perhaps to numerical methods. Thus

it becomes quite clear that without more experiments which either vary X(03) or which meas-

ure the species densities, we cannot differentiate between the two models. Another possible

solution might be independent measurements or ab initio calculation.- o the rate constants.

Tile homogeneous premixed hydrogen flame constitutes the next level of chemical com-

plexity. In this case the chemical reaction scheme may involve as many as fifty rates, Further,

because we are dealing with complex molecules, the diffusive transport coefficients cannot be

calculated as accurately as for the ozone flame discussed above. With more reactions, we have

in principle even more of a problem with non-uniqueness of the sets of input variables.

Hydrogen-oxygen and hydrogen-air flames have been modelled by Warnatz (981, Oran

and Boris [78], Dixon-Lewis, [1091, and Stephenson and Taylor [1071. For these flames, there

are extensive measurements available of chemical reaction rates and flame data. Figure IX.6

shows a typical propagating flamefront and Fig. IX.7 shows an expansion of tile flame region

containing steep temperature and density gradients [781. A typical comparison of calculated and

measured flame velocities [981 is shown in Fig. IX.8. As yet no extensive comparison such as

Heimerl performed for the ozone system has been made.

Methane and methanol combustion in oxygen and air surpasses hydrogen combustion in

complexity. Proposed mechanisms require from thirteen to thirty species and from forty to one

hundred and fifty rates, depending on whether or not reactions involving 11202, CHIX with x less

than 3, C2 hydrocarbon or alcohol radicals are included. To the naive but worried modeller,

there appears to be enough ambiguity in what must be included and uncertainty in the rate

coefficients to guarantee that there will be a difficult uniqueness pioblem to deal with. Even

with these obstacles to face, however, impressive work on modelling homogeneous premixed

flames has been carried out by Tsatsaronis [991, Westbrook and Dryer 11001 and Creightoa and
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Lund [1101.

Tsatsaronis used a computational procedure developed by Patankar and Spalding [1111 and

Spalding Stephenson, and Taylor [1121 to perform extensive comparisons between calculations

and measurements of C- 02 and CH4-air flames. These included studies of the effects of

varying the equivalence ratio in atmospheric CH4-air flames, the effects of increasing the tem-

perature of the unburned gas mixture in stoichiometric flames at one atmosphere, the effects of

varying the initial pressure, and the temperature and species profiles behind the flame front.

The final results presented include a set of chemical rate coefficients which contain only thir-

teen species and twenty-nine pairs of forward and reverse reaction rates. Tsatsaronis indicated

t.aat he had to adjust six of these pairs in order to obtain a set which best fit all of the available

data.

Figures IX.9 shows typical results of these comparisons. The experim.,tal data was taken

from Andrews and Bradley [1131 who summarize the results of many investigators and give

detailed citations to the data. In addition to data of the type shown in these figures, there have

recently been a series of stabilized burner measurements by Peeters and Mahnan [1141,

Dixon-I eis and Williams 11091 and Fristrom, Grunfelder, and Favin [1151 who obtained tem-

perature and species profiles. Tsatsaronis' comparisons of calc'-lations to the data of Peeters

and Mahnan are shown in Figs. IX.10.

Similar studies have been performed by Creighton and Ltnd [! 101 using a modified form

of the rate scheme proposed by Westbrook and Dryer [1001. These tests used several more

species and several fewer reaction rates and focused on defining the sensitivity of observables to

changes in input parameters. As in the results shown in Figs. IX.10, Creighton and Lund

obtained good agreement to measurements of major species and some of the minor species data

after appropriate adjustments of the rate constants or diffusive transport coefficients. For both

sets of mechanisms, however, the agreements between measurements and some of the minor

species, such as HG2, CH3, and CH20, were not as good.
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The methane studies discussed above are another example in which the chemical rate

scheme proposed to fit the data is not unique. Because so many rates and species are involved,

it is difficult to use the flame data to test anything but the grossest features of the reaction rate

scheme. Furthermore, we must be extremely cautious about applying any mechanism blindly

in regimes outside of the pressure, stoichiometry and temperature range which has been vali-

dated.

Recently there has been a study by Gelinas [1161 who compared measured induction

times in methane systems to those predicted by the chemical rate scheme proposed by himself,

Westbrook [22], Olson and Gardner [21], and Tsatsaronis. He found in this study that the first

three schemes gave reasonable agreement with measurements but that the one proposed by

Tsatsaronis gave induction times which are many orders of magnitude too large. From this we
an only conclude that either the flame data available is insensitive to the short-time behavior .

of the system or that this behavior is effectively accounted for by different compensating rates

in: different reaction rate schemes.

Westbrook and Dryer [100] have used the one-dimensional flame model developed by

Lund [31] to study methanol oxidation. The reaction rate scheme they propose has twenty-six

chemical species ind eighty-four elementary reactions and so is even more complicated and

perhaps mosc ambiguous than that proposed by Tsatsaronis for methane. The proposed

mechanism was first tested against shock tube and turbulent flow reactor data and thereby tuned

to include important reactions involving CH3OH and CH2OH. Within the temperature range

1000-2180"K, fuel-air equivalence ratios of 0.05-3.0, and pressures of 1-5 atm, the reaction rate

scheme gave excellent agreement with experiment.

Westbrook and Dryet then proceeded to study the dependence of laminar flame speeds

and structure on the pressure, equivalence ratio, and unburned gas temperature, comparing

these results when possible to available measurements. A typical example is shown in Fig. '

IX. 11, which compare , the species concentrations data taken by Akrich, Vovelle, and
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Delbourgo [1171 to model calculations. In general, however, there is not a plethora of data

available and the many calculations thus serve as a prediction of what will be seen when the

measurements are performed.

It has been noted by many authors that the major test of a proposed kinetic mechanism is

not whether it predicts major species concentrations and bulk trends well, but how well it

predicts the minor species and radicals. We must also realize that much of the work described

above is really not prediction, but postdiction used to test input parameters over a range of

pressures and temperatures. All of this is valuable and in effect gives us models and informa-

tion that can be used with the same caution we use most empirical models. When the physical

situation changes, they will need to be modified or extended to incorporate more of the funda-

mental processes. It is thus our recommendation that flame calculations not be used to deduce

empirical chemical rates schemes. Instead, they should be used to test whether rates schemes

derived from kinetics experiments and models (Section IV) do give reasonable predictions of

flame data.

IX.C. A Comparison with Theory

We now consider one example of the use of detailed modelling in conjunction with

theoretical analysis (781 to study ignition caused by heat addition to a combustible gas. The

theoretical model defines four parameters:

Eo, the total energy deposited,

70, the time interval for deposition of E,

Ro, the initial radius of the gaussian in which E, is deposited, and

t,(T) the chemical induction time as a function of temperature, T.

We assume a homogeneous premixed gas, one-dimensional spherical geometry, linear energy

deposition with time, and constant y. The continuity equation is written
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I dp -=-V. v (IX.l)

p di -

and the slow flow equation described in Section V gives

dP = 0- - yPV • v + V -VNkRKVT + Ste - 01)r2  (IX.2)
dt

Here kB is Boltzmann's constant and K is a function of the mixture thermal conductivity, X,

K 'yNk X(T). X.3)

The last term on the right hand side of Eq. (IX.2) is the source term. Proper choice of S(t)

ensures that a given amount of energy, E,,, is deposited in a certain volume, - R3, in a time

To. It is the choice of this Gaussian profile which allows us to obtain a "closed" form similarity

solution given below in spherical coordinates.

Using the assumption that dPldt = 0, an algebraic equation is written for V v from Eq.

(IX.2) which combines with Eq. (IX.3) and the ideal gas law to give

I d S Wek2(1)r2 + V - V T (IX.4)
T dt P0,e - T-

where P. is the background pressure. The solution is then

T(r, t) = T, (IX.5)

and

p(r, t) - p e -A(1)e- 2 ( ) 2  (IX.6)

where T. and p. are the background temperature and pressure, respectively. Thus the non-

linear slow-flow equations including expansions and contractions of the flow have been con-

verted into a single equation which is linear in the logarithm of the temperature.

Assuming that

v(rt) vl(t)r (IX.7)
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and demanding energy conservation allows us to write two coupled urdinary differential equa-

tions for k (t) and A (),

rA dk _ -kv, - 2Kk 3  (IX.8)
dt

M S W _ 6Kk 2A (IX.9)
dt y P

where

S F'(O) - F'(A) + 2k 2 AF'(A) - F(A) (IX.10)
v 3yP, F(A) F(A)

and

F (A (6)) = fo '"47rx2 [R - e- At ' 2] dx, (IX.11)

The model requires a curve of chemical induction time as a function of temperature in

order to define the induction parameter,

' r 
(IX.12)10) - r T, Mr, M))

Ignition "occurs" when l(t) - 1 in this model, an exact result in the limit of constant tempera-

ture near the center of the heated region.

Typical results for a mixture of H2:02:N2 / 2:1:10 are shown in Fig. IX.12. The left hand

portion of the figure shows the time variation of the nonlinear amplitude, A, and the charac-

teristic radius, R. The right hand portion shows the central temperature, T(r - 0) and the

induction parameter, 1, also as a function of time. The "*" marks the time for which ignition is

predicted by the model, substantially later than the time at which the energy deposition has

ceased. This particular choice of E. - 3.3 x 104 ergs is in fact the minimum ignition energy

predicted by the theory.

The similarity solution described above was used in conjunction with a detailed simulation

to test ignition predictions typical of those shown in Fig. IX.12. The full set of conservation

equations was solved using the ADINC algorithm 1551 which solves implicitly for the pressure.

~116



NRL MEMORANDUM REPORT 4371

The chemical rate scheme consisted of about fifty rates and ten species. A full set of diffusive

transport coefficients was included. The detailed model was then configured to run in spherical

symmetry with an open boundary and a Gaussian energy deposition.

Figtu'e IX.13 shows the results of a series of calculations performed with the detailed

model. Ignition is clearly indicated for ignition energies of at least 3.3 x i01 ergs, which agrees

well with the theory. This type of combined calculation gives us confidence in both the analyti-

cal model and the detailed simulation until we reach a range of parameters which invalidates

one of the models. This problem and the importance of molecular diffusion in certain parame-

ter regimes has been discussed by Oran and Boris [781.

IX.D. Two-Dimensional Subsonic Reactive Flow Calculations

Although the technology exists to solve Eqs. (ll.1)-(Il.12) in more than one dimension,

the added computational and storage costs preclude the level of detail that has been included in

the calculations described above. Thus two-dimensional models have generally been used to

study hydrodynamic or geometric effects and have included very limited representations of the

chemical reactions. Below we briefly describe the results of Kansa [1011 who studied the effects

of buoyancy on burning, the results of Butler and O'Rourke [102] who worked at flame propa-

gation in unusual geometries, and the work of Jones and Boris [511 who included a simple but

realistic model for chemical kinetics.

Consider a large, hot spherical droplet of fuel. As the gas molecules evaporate, they

diffuse into the surrounding air and react irreversibly with energy release. In an open chamber

without a gravity term to differentiate "up! from "down', the problem may be approximated by

a one-dimensional model. In two dimensions, there are distortions in the flow which develop

as the calculation approaches a steady state.

Kansa 11011 has used a two-dimensional model with an idealized one-step chemical

scheme to study this burning wick problem with and without the effects of gravity. The

117



ORAN AND BORIS

numerical technique applied was based on the RICE [331, method for which modifications were

made by Kansa to allow the iterations on large matrices to converge more quickly. Kansa con-

cluded that without the buoyancy term the typical hydrocarbon-air flame studied is quenched by

its own combustion products. When buoyancy is included, however, the flow field is distorted

and an upward buoyant convection of the hot gases develops. Thus the gravity term generates

an asymmetric flow field in which oxidation occurs and products are moved up and out of the

burning region. A shear flow is set up near the combustion zone at which the oxidant and fuel

mix. These results were in qualitative agreement to the temperature contours and flow field

measured experimentally by Hertzberg et al. [118].

Butler and O'Rourke [102] used the RICE code to study burning in two cylindrical

chambers connected at the bottom by a third chamber. Intially these chambers were completely

filled with reactant at uniform temperature and pressure. Then a fixed amount of energy was

deposited about the symmetry axis and near the wall of one of the large chambers. This energy

was enough to ignite a flame which propagated through the system.

In order to avoid having to worry about resolution at the flame front, a "turbulent

diffusivity" was defined which was at least as large as the numerical diffusion and much larger

than laminar diffusion effects. Thus, in an ad hoc way, they "modelled' a turbulent flame

whose propagation velocity is greater than that of a laminar flame. By defining the problem in

this way, they avoided the need for the complicated adaptive gridding algorithms required to

resolve a flame front. In the limit of a laminar flame, the answers obtained would be totally

dominated by numerical diffusion.

The results of the calculations showed that as the flame in the first chamber was ignited

and began to propagate, a compression wave was generated ahead of it in the other large

chamber. At later times, the flame front had advanced rapidly and velocities at the inlet were

large. A large vortex formed as the flame collided with the right hand wall. Eventually the

gases in the small chamber expanded to the point where velocities in the inlet reversed
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direction. The series of velocity vector and reactant density contour plots in Fig. IX.14 show a

time-sequence of this calculation.

To our knowledge, the model of Jones and Boris [511 is perhaps the only two-dimensional

time-dependent subsonic reactive flow model currently set up with a realistic chemical reaction

scheme and the complete set of diffusive transport coefficients. The added flexibility derives in

part from their use of the asymptotic techniques described in this paper. A number of bench-

marks of the model and each of its constituent algorithms have been reported. To do this they

used both analytic solutions and one-dimensional flame calculations of the types described

above.

A typical test is represented by the results shown in Fig. IX.15. A flame was initiated in a

homogeneous premixed gas by assuming that the temperature is constant and high out to R,

where it drops suddenly to 300K. This one-dimensional model thus assumed spherical sym-

4S
metry with a hot spot from r = 0 to r - R, in a volume 4ir R The two-dimensional

model assumed a hot, spherical spot of the same size in a cylindrical volume made equal to

4-r R max.

Figure IX.15 shows the central temperature as a function of time. The initial temperature

increase is a result of energy release due to burning in the hot sphere. Once the flame is ini-

tiated and has propagated past the initial hot spot, the temperature at the center decreases due

to adiabatic expansion and thermal diffusion of excess heat out of this region. However,

because the chamber is closed, the pressure is constantly increasing due to the constant release

of energy. A point is finally reached (- 1 2sec) where all of the unburned material ahead of

the flame ignites. The differences in the one-and two-dimensional calculations at 10- 2 sec may

be attributed to the fact that the geometry of the chambers in each calculation is slightly

different and that the resolution of the one-dimensional model is better.
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X. REACTIVE FLOWS WITH TURBULENCE

Our understanding and eventual ability to predict the complicated interactions occurring in

turbulent reactive flow problems is imperative for many combustion modelling applications.

The goal of this section is to first describe the fundamental physical processes we must model if

we wish to simulate reactive flow turbulence and then show how detailed modelling of these

phenomena may be used to help construct practical phenomenological turbulence models for

reactive flows. The presence of turbulence alters mixing and reaction times and heat and mass

transfer rates which in turn modify the local and global dynamic properties of the system.

Because turbulence is so important, we need reasonably accurate models to use in reactive flow

hydrodynamics codes. The general views of the turbulence community of what these models

should be are well-represented in the many references given at the end of this paper. It is our

belief that none of these models includes enough of the physics of expanding, variable density,

transient, multi-scale reactive flows to provide a reliable predictive model representing tur-

bulence in a general code. Thus we concentrate on a complementary representational frame-

work for modelling turbulence dynamically which we hope will suggest new ways of approach-

ing these old problems.

If the full set of conservation equations for mass, momentum, and energy in multispecies

flow could be solved exactly for a large enough range of time and space scales, turbulence and

turbulent mixing phenomena would be contained explicitly in the solutions. Unfortunately,

teven the fastest and largest computers are neither fast nor large enough to solve a typical prob-

lem involving turbulence from first principles even though the fundamental mathematical

model is adequate. The basic problem in doing the computation arises from the vast disparity

in time and space scales among the fundamental physical processes. For example, consider a

system in which the mean free path X, the characteristic scale length of diffusive mixing in

reacting shocks, is six o;rders of magnitude smaller than the macroscopic convection length, L.

. A three-dimensional model resolving both scales would need - 106 computational cells in each
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spatial dimension, or a total of -1018 grid points. Perhaps it might be possible to use 106 grid

points, but certainly not twelve orders of magnitude more. In trying to represent all of the

macroscopic, turbulent mixing, and characteristic molecular dissipation scales in a single calcu-

lation, we are confronted with perhaps the most perplexing multiple time-scale and multiple

space-scale problem in the detailed modelling of reactive flows. We must develop some practi-

cal algorithm to encompass these widely disparate scales in the same calculation.

In modelling turbulence phenomena, it has been the rule to try to develop separate equa-

tions which describe the subgrid scale mixing and reactions. These are then coupled to the

coarsely resolved macroscopic fluid dynamics calculations we know how to perform. Here the

proper separation a.nd recoupling procedures for subgrid turbulent mixing and macroscopic flow

are not nearly as obvious as the analogous problem of coupling a detailed chemical kinetics

reaction scheme to a laminar hydrodynamics calculation [40,661. It is not even clear how to

represent some of the important transient mixing phenomena qualitatively let alone arrive at

quantitative estimates of their effect.

We first discuss the fluid dynamic origins of turbulent mixing in order to obtain an intui-

tive picture of the range of phenomena which must be represented. We then use this informa-

tion to develop a list of resulting requirements which we would like an ideal turbulent mixing

submodel to have. We next consider first-principle, ab initio calculations which can provide

information about the dynamic characterk:yics and spectral evolution at length scales smaller

than can be resolved with a macroscopic fluid dynamics model. Ab initio calculations are often

extremely expensive, but must be performed to provide detailed understanding of microscale

processes and of transition to turbulence. Purely phenomenological turbulence models cannot

be expected to tell us anything fundamental about turbulence or turbulent mixing. The basic

physical processes must be built into the phenomenology- they cannot be derived frorr it. Thus

a series of idealized ab initio calculations may be used, for example, to delineate the hydro-

dynamic channels for turbulent energy reapportionment and to provide ways to analyze those
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rroperties which must be built into the phenomenological models.

We then describe four types of phenomenological turbulence models. In a phenomeno-

logical model we seek to represent but not to resolve all the myriad of individual fluid dynamic

degrees of freedom within each macroscopic cell as efficiently as possible. If the basic processes

controlling a particular measurable transient or turbulent transport effect are not represented in

a phenomenological model, certainly the model cannot predict the occurrence of the effect.

X.A. The Origins of Turbulence

In this section we discuss three aspects of reactive flow mixing which, whennsidered

together, give a consistent picture of turbulent flows. By thinking in terms of these three

different aspects and their interactions, we gain an inituitive understanding of reactive tur-

bulence and the ways in which it differs from the classical non-reactive cases. The first aspect

deals with the hydrodynamic channels for mixing. It is instructive to adopt the idea that tur-

bulence begins in a laminar macroscopic flow as the onset of a fluid instability. The energy

which drives this macroscopic instability then cascades through various hydrodynamic channels

and is spread convectively over a broader spectral range. By concentrating on the fluid instabili-

ties and their evolution as a response to chanting fluid conditions, turbulent mixing can be

viewed as a cascade of systems of distinct instabilities [1191. The second aspect focuses on the

idea that turbulent mixing is dependent on the contortion of reactive surfaces which originally

separate reactive species. We must first follow and then predict the behavior of these surfaces

as they move and stretch with the fluid. Steady increase of the reactive surface area enhances

molecular mixing and speeds reactions. The third aspect of the reactive flow mixing problem is

the detailed chemical kinetics and chemical energy released by these reactions. Energy release

in gaseous flows promotes expansion and, if the flow is sufficiently exothermic, can induce

buoyancy. Thus the kinetics feeds back into the hydrodynamic channels and the cycle is closed.

*" An extensive body of knowledge has been developed in using models of turbulence and
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turbulent mixing in constant density non-reacting fluids [120-1231. However, in combustion

systems there are interactions which modify or may even obviate these models. One such phy-

sical mechanism is the localized change in the rates of heat and mass transport due to the tem-

perature dependence of transport coefficients. Another mechanism arises from the strong den-

sity gradients occurring locally in the combustion. Non-linear phenomena such as these deter-

mine the turoulent scale lengths and eventual chemical reaction effects. The various scale

lengths covered by diffusive mixing, convection, and fluid instabilities are bounded by a dissipa-

tive mean free path scale length on one hand and the macroscopic system scale on the other.

This is shown schematically in Fig. X.1. Since energy release due to chemical reactions can

only occur where the fuel and oxidizer mix molecularly, turbulent combustion is driven by an

energy source which fluctuates on the scale of the turbulent mixing lengths. This situation

differs markedly from classical turbulent flows.

X.A.1. Dynamic Fluid Instabilities and Hydrodynamic Channels: The First Aspect

There are many examples of possible hydrodynamic channels for turbulent energy reap-

portionment. Most of these channels involve transient effects for which detailed balance or

steady state arguments are inapplicable [124]. They involve the quick onset of a relatively short

wavelength fluid instability which results from a slow or parametric variation of the background

flow. Thus the configuration changes from one of local hydrodynamic stability to one of insta-

bility. At and just beyond the transition point of marginal stability, the growth rates are very

slow and the unstable wavelengths relatively long. As the background flow continues to evolve

into the unstable regime, maximum growth rates increase and instability spreads over a broader

band of the spectrum. The turbulence, which is the non-linear manifestation of these instabili-

ties, arises in bursts on the macroscopic scale and is an intrinsically transient phenomenon.

Thus the idea of a steady state cascade of either vorticity or turbulent energy is an artificial con-

cept because so many of the channels underlying the turbulent process are intermittent. New

concepts are needed to describe these turbulent bursts.

123



ORAN AND BORIS

Marginal stability methods '[125-127] can play a very useful role in determining the tran-

sient interactions between macroscopic flows and the microscopic instabilities which they

induce. In splitter-plate experiments, for example, the Kelvin-Helmholtz instability grows ini-

tially at wavelengths characteristic of the entrance flow. For certain experimental designs the

instability may be essentially two-dimensional [128,129i. A vortex street begins to develop and

vortices coalesce with rapidly stretching braids of interfacial material winding up in the cores.

Figure X.2 shows a numerical calculation of such an instability. When the local Reynold's

number is high enough, the flow in the vortices becomes Taylor unstable in the third dimen-

sion at still shorter wavelength. Thus a one-time situation occurs and then passes.

In splitter-plate experiments there is a constant source of energy and a tendency toward

instability. The turbulence grows up to a level where the governing flow remains near marginal

stability. If the turbulence decays somewhat, the background flow becomes more unstable until

the turbulence builds up again. If the turbulence becomes somewhat too strong, the back-

ground flow is broken down and smeared out with the general effect of reducing the growth of

instabilities. In the smoother flow the turbulence soon starts to abate, Since there is a decay

time associated with the turbulence and an induction time-lag for the instabilities, it is not

surprising that intermittency, coherent structures, and bursts of turbulence are the norm rather

than the exception.

One of the major physical conditions which distinguishes reactive flow from classical tur-

bulence is the existence of density gradients. These cause the baroclinic generation of vorticity,

f , through the term

VP _ VVP
di p

where p and P are the multidimensional fluid density and pressure fields, respectively. Below

we consider two of the hydrodynamic channels activated by density gradients. These channels

are rather typical of the many multi-scale interactive effects which will have to be understood

before we can claim to understand turbulence. 124
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When the mass density p is constant. as is assumed in much of the classical turbulence

literature, all of the effects potentially depending on the vorticity source term are absent by

construction. In the classical picture, the turbulent vorticity spectrum is driven at macroscopic

scales, the intermediate wavelengths are populated by cascade and vortex stretching, and the

short wavelengths in the spectrum are dissipated viscously (collisionally). In combustion, the

localized release of heat in molecularly mixed fuel-oxidizer pockets causes strong transient

expansion of the combusting gases. The resulting low density region has scale lengths charac-

teristic of the combustion process and interacts with pressure gradients to generate vorticity in

the flow on these same characteristic scales. Vorticity on these scales is efficient at turbulent

mixing and can be expected to feed back on itself. The combustion process is in turn enhanced

as long as fuel and oxidizer are present. Since the spectrum seems now to be driven at short

wavelengths as well as long, plateaus or even peaks might form in the spectrum altering the

usual notions of cascade, scaling, and hence modelling.

There are two different channels for turbulent mixing that this fluid expansion activates in
chemically reactive flows. These can be understood qualitatively in terms of localized

Rayleigh-Taylor growth. The first role, an active ,ne, occurs when a pocket of gas is actively

expanding due to the heat released from chemical reactions. This case is shown schematically

in Fig. X.3. The expansion occurs in a restricted volume because the fuel and oxidizer enter

the reaction region separately. A time-varying acceleration accompanying this expansion is felt

in the surrounding fluid. A region of strong densty gradients undergoing this acceleration will

be subject to the Rayleigh-Taylor instability during much of the time the energy is being

released. A perturbation, whose wavelength is comparable to the distance the fluid moves

while expanding, will e-fold about once from the expansion. A nonlinear analysis of the

integrated vorticity generation in this problem and ab initio simulations to calibrtte the analysis

have been performed in cylindrical geometry [1301. The transient expansion induces persistent

vortex filaments whose characteristic mixing time, r,,,, is given in terms of the expansion

time, r,, by
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37ix 37 Xf

T" [kfX-- 1Iln Xf

where Xf is the volumetric expansion factor from the chemical reactions. For combustion

applications, Xf is generally in the range 4 to 10. Thus the corresponding induced mixing

progresses only 3% as fast as the driving expansion, but it continues indefinitely. The expan-

sion, however, is an intrinsically transient phenomena.

The second role of density gradients, depicted in Fig. X.4, is passive, but is potentially

more important than the active role. In the passive role the expansion influences turbulent mix-

ing by providing the density gradient which leads to vorticity generation. Consider a localized

fluid vortex rotating at angular frequency w. The acceleration of the fluid is Rw 2 at radius R.

Smaller low-density pockets in this vortex, formed by chemical reaction at an earlier time, are

4 unstable to the Rayleigh-Taylor modes where the local centrifugal fluid acceleration points

opposite to the density gradient. The acceleration is provided by the divergence-free rotational

flow generated earlier or driven into the system externally.

Because the active generation of vorticity is limited in time to the expansion phase itself,

it is reasonable to expect that the amount of vorticity generated by the passive interaction of

existing density gradients with large scale vortices is even greater. A very simple analysis indi-

cates that there are several growth times of the Rayleigh-Taylor mode during a single rotation

of the vortex when the mode wavelength is comparable to the vortex radius. Since neither the

active role nor the passive role of expansion are described by standard incompressible fluid tur-

bulence theories and models, improved models incorporating these and other hydrodynamic J

channels will have to be developed.

X.A.2. Reactive Interface Dynamics: The Second Aspect

Turbulent mixing can also be viewed as the stretching and convolution of surfaces which

originally separate reactive species. These reactive interfaces or surfaces move with the fluid.

As the fuel and oxidizer diffuse molecularly, these surfaces continue to lie normal to the
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strongest species density gradients. The situation is presented in Fig. X.5. In the upper left-

rhand panel a cube of fluid 1 cm on a side is shown at time t = 0. An interface between react-

f ing species A and B divides the cube into two halves. Subsequent stretching of this reactive

I surface is controlled by the local fluid velocity.

Motion of the fluid elements making up the reactive surface breaks down into a com-

ponent normal to the surface which can change the integrated area and components parallel to

the surface which cannot. These two distinct situations are illustrated in Fig. X.6. All of these

components are important and complement each other in the turbulent mixing process. When

nearby points on the surface separate or stretch, the fluid on opposite sides of the surface

approaches the surface to keep the flow roughly divergence-free. Any species or temperature

gradients normal to the initial surface are enhanced, which in turn increases the diffusive inter-

penetration of the reactants. This surface stretching process is independent of convective inter-

penetration of material which also enhances mixing. This latter process, shown on the right of

Fig. X.6, is governed by derivatives of the normal velocity parallel to the surface. By increasing

the actual area of the reactive surface, the bulk reactivity is also increased. Stretching and

interpenetration usually occur simultaneously but for clarity have been illustrated separately in

Fig. X.6.

If the turbulent spectrum is dominated by short wavelengths, an originally smooth surface

will become very wrinkled at short wavelengths before larger scale convolutions have had a

chance to grow. This is illustrated in the upper right hand panel of Fig. X.7. Because the

length scale of the turbulent spectrum is close to molecular mixing lengths, the effective

volume in which enhanced mixing occurs is much less than what would be calculated knowing

the stretched surface area. Adjacent folds of the surface which approach within the molecular

diffusion length of each other tend to merge their mixed volumes, as shown in the Fig. X.7.

The smaUl surface corrugations rapidly get smoothed over with diffusive "fluff' so the effect of

molecular diffusion is to limit the rate of convective growth of the reactive surface area.
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In the opposite case, shown in the lower left hand panel of Fig. 7, the dominant

wa'.,elengths are long compared to the molecular mixing length. The surface is characterized by

relatively smooth, long wavelength bulges which can fill a large volume before any of the

mutual interference effects described in the previous paragraph occur. In fact, the area of an

ideal Lagrangian surface in an isotropic, homogeneous turbulent velocity field should probably

increase exponentially. Molecular mixing now occurs along convolutions which have scales

longer than the diffusion length. Eventually, however, overlap of the effective mixed volume

occurs as the surface becomes more convoluted. Thus, the molecularly mixed volume is again

limited even though the ideal reactive surface area goes to infinity.

X.A.3. Detailed Chemical Kinetics: The Third Aspect

The two aspects of time-dependent turbulent mixing in reactive flows presented above,

the hierarchy of instabilities and the evolution of the reactive surface, focus on the nonlinear

fluid dynamic interactions and the reactant-mixing effects respectively. These two aspects com-

plement each other and a clear picture from each will be required to gain a proper perspective

on turbulent mixing. The third aspect we wish to discuss is detailed chemical kinetics. The

essentially one-dimensional profiles of the fuel, oxidizer, and other reactants perpendicular to

the reactive surface change n(,, only from convection and molecular diffusion but also from

chemical reactions. The fluid dynamic expansion and heat release must self-consistently couple

back into the excitation of hydrcdynamic channels to complete the picture.

A major concern then is the range of validity of fast chemistry approximations made to

simplify the analysis. In some cases the overall reaction rate is governed by the diffusion of hot

fuel and oxidizer together through an expanding region of hot products and reactants. In other

cases the fuel and oxidizer mix convectively and then molecularly before heating and ignition

occurs. These latter situations are generally ignited by a rapidly moving flame frort which trav-

els parallel to the reactive interface rather than perpendicular to it. Here finite chemical kinet-

ics clearly plays a crucial role since it determines the flame speed.
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We have emphasized the feedback and interactions among of hydrodynamic channels,

reactive interface dynamics, and detailed chemical kinetics. These three distinct aspects also

suggest independent yet complementary approaches to ab initio computational techniques,

which are considered further below.

X.B. Properties of an "Ideal" Subgrid Mixing Model

Accurate yet compact phenomenological turbulence models must be developed to model

realistic combustor systems, open flames, and other turbulent reactive flows confidently and

efficiently. These computational models must asymptotically decouple the subgrid turbulence

and microscopic instability mechanisms from calculations of the macroscopic flow. In this sec-

tion, the important properties which we would like to see incorporated in an ideal turbulence

model are listed and described. The goal is to use these desired properties to guide us in both

extracting information from ab initio calculations and constructing phenomenological turbulence

models.

X.B.1. Chemistry-Hydrodynamic Coupling and Feedback
V

Explicit feedback mechanisms must be formulated to describe energy transfer from the

mixing and subsequent chemical reactions to the turbulent velocity field and the macroscopic

flow. The "laminar" macroscopic flow equations contain phenomenological terms which

represent averages over the microscopic dynamics. Examples of these terms are eddy viscosity

coefficients, diffusivity coefficients, and average chemical heat release terms which appear as

sources in the macroscopic flow equations. These modified Navier-Stokes equations are postu-

lated to include the effects of turbulence. Besides providing these phenomenological terms, the

tv:bulence model must make use of the information provided by the large scale flow dynamics

in order to determine the energy which drives the turbulence. The model must be able to fol-

low reactive interfaces on the macroscopic scale.
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X.B.2. Modelling Onset and Other Transient Turbulence Phenomena

The model should be able to predict the onset of turbulence in what was initially laminar

flow since bursts and other highly transient phenomena seem to be the rule in reactive flow tur-

bulence. The fundamental gradients in density, temperature, and velocity fields in the reacting

fluid drive the macroscopic fluid dynamic instabilities which initiate turbulence. Thus these gra-

dients from the macroscopic calculation are bound to be key ingredients in determining the

energy that is available to drive the turbulence. Density stratification in a time-dependent fluid

dynamics model is essential.

X.B.3. Complicated Reactions and Flow

The ideal turbulence model should allow for detailed calculations or suitable parameteriza-

tions of chemical kinetics, of buoyancy effects, and of the other hydrodynamic channels which

the physics in a given situation might require. In particular it must be possible to deal with

multiscale effects within the subgrid model. If there is a delay as velocity cascades to the short

wavelength end of the spectrum, the model must be capable of representing this. Otherwise

bursts and intermittency phenomena cannot be calculated.

X.B.4. Lagrangian Framework

An ideal subgrid model probably should be constructed on a Lagrangian hydrodynamics

framework moving with the macroscopic flow. This requirement reduces purely numerical

diffusion to zero so that realistic turbulence and molecular mixing phenomena will not be

masked by numerical smoothing. This requirement also removes from concern the possibility

of masking purely local turbulent fluctuations by truncation errors occuring when macroscopic

convective derivatives are represented numerically. The time-dependent (hyperbolic) Lagran-

gian framework should also generalize to thrce dimensions as well as resolve reactive interfaces

dynamically.
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X.B.5. Scaling

Breaking the calculation into macroscopic scales and subgrid-scales is an artifice to allow

us to model turbulence. The important physics occurs continuously over the whole spectrum

from k = 0 to kdis,, the wave number above which the spectrum is dominated by viscous

damping. Thus the macroscopic and subgrid scale spectra of any physical quantity must couple

smoothly at kceii, the cell size wave number. If this number changes, as might happen if

numerical resolution is halved or doubled, the predictions of the turbulence model coupled to

the macroscopic fluid equations must not change.

X.B.6. Efficiency

Of course, the model must be efficient. The number of degrees of freedom required to

specify the status of turbulence in each separately resolved subgrid region must be kept to a

minimum for the model to be generally useable. The real fluid has essentially an infinite

number of degrees of freedom to represent the state of the gas in each small element. We

would like to be able to do the job with a minimal number of degrees of freedom

Finding a representation which has all of these ideal properties is not easy. Several alter-

native approaches are mentioned below. It is obvious that consideration of the dynamic aspects

of instability cascade and reactive surface evolution necessitate significant departures in model-

ling techniques from methods found adequate when fast chemistry or steady state Eulerian

models of classical turbulence are assumed.

X.C. Ab Initlo Calculations

To assess quantitatively the interaction between energy release and turbulence, it is possi-

ble to perform idealized fundamental reactive fluid dynamic calculations taking advantage of

today's advanced computer systems. Available algorithms permit us to solve the full set of

conservation equations for multi-dimensiciial multi-species flow on what is generally considered
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the hydrodynamic subgrid scale. These time-dependent numerical models consider buoyancy

and compressibility effects and include realistic expressions for heat and mass diffusion and

chemical reactions. Thus the full spectrum of compressible fluid dynamic effects may be simu-

lated for a small volume with enough grid points to resolve the turbulence and the dissipation

scales as well as the necessary macroscopic convective effects.

The ultimate goal of such ab initio calculations is to advance cur basic understanding of

turbulence and to provide information about the small scale mixing and energy release which

can then be used to construct and calibrate phenomenological turbulence models. In constant

density, idealized, incompressible turbulence, a number of these ab initio calculations have

been successfully performed [4,131-1331. Such calculations can also be made for compressible

reactive turbulence, but the computations are somewhat more difficult. This difficulty mani-

fests itself in a number of ways. First, resolution of all scales in complicated macroscopic prob-

lems is not generally possible so only very idealized and restricted questions may be asked.

Second, an ab initio calculation is performed only for one specific initial condition. Thus sta-

tistical information about the "turbulence" must be obtained in transient problems by perform-

ing a number of calculitions and averaging. Finally, the cost of these detailed, first-principle

fluid dynamic calculations is not small.

The results of these detailed ab initio simulations are correspondingly valuable. Any

correlation, stress term, fluctuation, conditioned sample, or overlap integral can be determined

from the computed flow without interfering with the numerical experiment. Therefore closure

t assumptions for more phenomenological turbulence models may be tested directly. This cali-

bration procedure is particularly valuable because the detailed computational solution of many

important large-scale reactive flow problems is well beyond present technology. It will be

necessary to use intermediate phenomenological, i.e., lumped-parameter, models to incorporate

all of the scales for practical engineering applications. These models must be carefully cali-

brated using experimental data and specific ab initio calculations.
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The ab initio calculations themselves, not their parameterizations, are the only computa-

tions that can teach us something about subgrid scale turbulence. Realistic chemical models

can be included on the microscopic scale if a restricted enough system is being treated. There-

fore each fluid element, as it undergoes hydrodynamic motions which differ slightly from its

neighbors, experiences a correspondingly different chemical history. The lumped-parameter

subgrid model must necessarily represent an average behavior in a macroscopic fluid element.

These averages can be evaluated directly in idealized situations using large detailed ab initio tur-

bulence simulations.

The probability density functions (PDFs) currently used in multi-moment modelling of

turbulence can be measured from detailed simulations as a function of time, configuration, and

chemical kinetics. This can even be done in situations where the energetic feedback of the

reactions on the hydrodynamics is specifically incorporated. Thus not only can phenomenologi-

cal models be tested, they can be upgraded as improved phenomenologies are derived from the

analyses of the ab initio calculations themselves.

Perhaps most important, ab initio calculations can be used to answer fundamental ques-

tions a'Lout the turbulent mixing process itself. The active and passive roles of expansion in

reactive flow turbulence were discussed above as an illttration of nonlinear fluid dynamic

phenomena which enter when sharp density variations and energy-significant reactions charac-

terize the low. These phenomena are only two examples of many identifiable hyorodynamic

channels for turbulent energy reapportionment. Ab initio calculations can be used to isolate

these individual channels on selected scales and study their characteristic signature in the flow.

Other examples of such channels would be mixing from growth of the Kelvin-Helmholtz insta-

bility at shearing interfaces driven by the effects of buoyancy, Taylor instability arising naturally

in larger vortices and vortex sheets, and Rayleigh-Taylor instability mixing where the pressure

gradients are gravitationally induced. Each of these channels is really a mechanism for taking

relatively organized kinetic, potential, or internal energy on one scale and reapportioning it to
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other scales. Results from two two-dimensional simulations are presented below to show the

kinds of information that may be extracted. Similar calculations are being performed in three-

dimensions where necessary or with different initial conditions that focus attention on other

hydrodynamic channels.

Result. from one such ab initio calculation are shown in Figs. X.8 and 9. A two-

dimensional version of the FCT reactive flow model [6,401 was used to solve the time-

dependent conservation equations for mass, momentum and energy on a square, doubly

periodic domain using an ideal gas equation of state. A three species model kinetics scheme is

included to represent the exothermic reaction A + B - C + Heat. Each of the three species

mass densities (PA, PB, and Pc) satisfies its own continuity equation with an added molecular

diffusion term. Viscosity is neglected (a von Neuman-like treatment of shock heating is not

needed in the FCT formalism). Figures X.8 and 9 show different computer plots of the results

for two fluids of different density, which interpenetrate and diffusively mix as the result of an

initial velocity field. Using such calculations we hope to measure the variation of mixing rate

with density difference. In Fig. X8, contours at p, + a(pb -p,) are shown where

a= 0.1, 0, 2, .... 0,9. After 0.3 seconds, the beginning of convective mixing is seen due to

an initially impressed random velocity field. At the two later times shown (lower panels),

molecular mixing, enhanced by short wavelength convection, leaves only the contours at

a = 0.4, 0.5, and 0.6. As can be seen from Fig. X.9, molecular mixing rapidly smooths out

the jagged interfaces which result from the short wavelength components of the "turbulence"

field at the beginning of the calculations. From this calculation we see that ab initio models can

be used only in very idealized turbulence problems although these limited problems can be

solved.

Another time-dependent two-dimensional ab initio calculation performed on the Kelvin-

Helmholtz instability [421 is shown in the four panels of Fig. X.2. Two different fluids initially

in relative shear flow abut at a sharp interface at x = 0. The fluid on the left moves up and the
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fluid on the right moves down. Solid wall boundary conditions are applied to the left and right

boundaries at x = + 100 and x -100 respectively. The vertical boundaries are periodic to

accommodate the inflow and outflow systematically. Enough cells are present in the calculation

(200 x 360) to allow representation of relatively short scale lengths such as the interface

between species A and B (shown as two contours at the levels 0.4, and 0.6 in the function

PA/(PA + P8). Intermediate scale lengths, such as the vortex size which develops, and longer

scals characteristic of the system size can thus be easily resolved. The different interactions of

these scale lengths, such as the vortex pairing shown in Fig. X.2, can be displayed and studied

explicitly in properly posed and analyzed ab initio calculations.

Two additional data curves superimposed on the contour plots of Fig. X.2 are the one-

dimensional vertical averages of the species densities at each horizontal location in the calcula-

i tion. These averages appear as solid bars at y = 180 in the upper left hand panel, our initial

configuration. Species A, plotted as A's, has a vertically averaged value of PA/P = 1 on the

left of the initial shear interface and zero on the right. Species B has just the reverse initial

profile. As the fluid instability progresses, the vertically averaged density shows a gradual tran-

sition crossing the shear layer, even though the spatially varying and stretching reactive surface

remains sharp. In this way, deterministic, detailed, convective effects in the ab initio calcula-

tions can be compared one-for-one with fuzzy, statistical, averaged, diffusive-like effects in a

phenomenological model.

Also from Fig. X.2 we can see that the average density at the edge of the turbulent layer

displays a rather discontinuous drop reminiscent more of erosion at the edge of a cliff than of

gentle interdiffusive penetration of two species. The effective one-dimensional diffusion

coefficient must be highly variable in space and tihe to model the intrinsically two-dimensional

mixing which occurs. Such variability may be provided by making the turbulent diffusivity a

nonlinear function of the "turbulence" itself. We can also see, particularly in the lower right

hand panel, that even though both <p,1p> and <ps/p> are about 1/2 at x = 0, very little
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of the fluid is actually mixed. Rather, strips of one or the other pure fluid are interleaved.

Reactions between A and B can only occur where they are molecularly mixed. Thus reactions

would still be occurring as surface phenomena even though <PA> - <PB> in an apparently

extensive volume.

This last example makes clear one of the great operational advantages of using detailed ab

initio calculations in the construction of phenomenological turbulence models. A crudely

resolved macroscopic flow calculation with a subgrid model for turbulence could be compared to

an ab initio calculation of the same exact problem. By varying only the reso!ition and keeping

identical the initial conditions, fluid dynamics algorithm, and boundary conditions the transition

from a detailed ab initio representation to a cruder phenomenological representation can be stu-

died in detail.

In a complete model of reactive turbulence, all space and time scales between the macros-

copic convecti, n and the molecular dissipation scales are potentially important to the fluid and

must enter into the description of turbulence. There is no intermediate scale which can be

ignored safely in making the asymptotic decoupling between macroscopic and statistically indis-

tinguishable microscopic scales. However, the transition from a discrete representation on a

macroscopic mesh to a phenomenological subgrid representation is necessarily discontinuous

and therefore likely to be a major source of difficulty.

In the ab initio calculations, the chfracteristics of and interactions between the various

hydrodynamic channels for turbulent reapportionment comprise a local description of the tur-

bulent mixing problem. This local approach risks missing global interactions in and constraints

on the flow. These can only be treated by using a complementary phenomenological model

coupled with the large scale macroscopic flow. Various options for phenomenological modelling

are discussed in the next section.
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X.D. Options for Phenomenological Turbulence Modelling

Most of the current phenomenological turbulence modelling techniques are based on the

idea that local fluctuations in the macroscopic mean flow decorrelate rapidly in space. Thus the

local turbulence details would depend only weakly on turbulent fluctuations a small but macros-

copic distance away. Within this context, a local turbulent energy density, a characteristic mix-

ing length, and concentration fluctuations may be defined. Conversely, fluctuating coherent

structures on the macroscale must be represented in the fluid dynamics; a local turbulence

modei cannot be expected to deal with non-local fluid dynamics.

Below we describe four kinds of phenomenological mooels:

I1. Turbulent Energy and Scale Models,

2. Moment Equation Methods,

3. Physically Motivated Phenomenological Models,

4. Localized Spectral Dynamics Model.

4These approaches are discussed in terms of the six criteria listed above. The four generic

model types c scribed below are certainly not all-inclusive, but they are representative of the

major approaches pursued today in reactive turbulence.

X.D.1. Turbulent Energy and Scale Models

Based on the idea that turbulence can be described by local fluctuations, a number of

authors have written down evolution equations to propagate the turbulence energy, scale

lengths, species overlap integrals, etc. The equations for these subgrid quantities or combina-

tions of them take the same form as those of the mean fluid quantities. The characteristic

source and sink terms are functions of both mean flow variables and local turbulence parame-

ters. There is a long history of work in this area, starting with Kolmogorov [1341 in 1942 and

continuing to date with the three-equation model of Spalding [1351.
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These one-, two-, and three-equation approaches have been used most successfully for

certain classical non-reactive flow problems which primarily involve shear flows with high Rey-

nolds numbers away from boundaries and turbulent boundary layers. The results are often

acceptably accurate in describing problems in which the turbulence has already developed. The

free parameters which always appear in these models must be optimized or calibrated against

experiments. These methods are questionable for the treatment of reactive flows, high Mach

number flows, low Reynolds number flows, flows where gravity is important, or intermittant

turbulent bursts. The presence of large coherent structures in real mixing situations casts

further doubt on the authenticity of many of these models. Nevertheless, since phenomenolog-

ical models are essentially interpolative, good results are possible whenever good data exist.

X.D.2. Moment Equation Methods

In an attempt to make these turbulent energy and scale models more reliable and

rigorous, mathematical approaches have attempt4.d to generalize the intuitive models described

above into more formal closure procedures [136-139]. The physical variables Ire decomposed

into a mean part representing the macroscopic flow and a fluctuating part representing the

subgrid scale turbulence. Equations for the mean and fluctuating components are derived in

terms of successively higher order nonlinear correlations of the fluctuating quantities. The

hierarchy of moment equations can only be closed, however, by making an assumption that the

unknown higher-order terms can be written as combinations of lower-order quantities. In prac-

tice, "the hierarchy of equations is closed by semi-empirical arguments which range from very

simple guesses for an exchange coefficient to much more sophisticated hierarchies, in which the

ultimate closure is very remote from any physical bases" [1241.

These closure approximations, which have been considered in spectral space [140] as well

as configuration space, often contain a number of non-dimensional parameters which are
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hoped to be universal in the sense of being constant or nearly constant over a wide range of

turbulent flows. Of course this multiple-moment approach also suffers the criticism that so

many free parameters become potentially available, if the hierarchy is carried far enough, that

any functional behavior could be fitted. Nevertheless, for certain non-reactive, incompressible,

constant-density flows, satisfactory agreement between the models and selected experiments is

obtained.

The extension of the moment methods to reactive flows has used the idea of a probability

density function (PDF), [141,1421 which attempts to relate time averaged macroscopic quanti-

ties to their instantaneous local values. Choice of the PDF is close to arbitrary, although physi-

cal significance is being attached to whether delta functions or trapezoids are used [142]. A

major conceptual problem lies in the fact that some calculations are extremely sensitive to the

form of the PDF.

A related problem concerns the exact order and form of closure. It was originally hoped

that by going to higher and higher order models, more accuracy would be obtained. The

current feeling is that the simple two- or three-equation models do as well as the higher order

models. Higher orders yield more free parameters which can be fit to data. But the resulting

models are no more universal because the expansions on which they are based tend to break

down whenever the fluctuations in the flow are comparable in magnitude to the primary flow or

when coherent structure in the turbulence demands the retention of phase information.

Another point should be mentioned here. The turbulence modelling schemes currently

used convert the detailed consequences of microscopic motions, which are thought of as sto-

chastic random phenomena, into absolutely deterministic effects driving flow on the macros-

copic scale. Thub in a reacting fluid system which is modelled by a set of laminar fluid equa-

tions and a prescription for the effects of turbulence, a given initial configuration will always

lead to the same final state. Even though the real fluid system is being described in the model

by only a small finite number of degrees of freedom, the answers predicted by the model are
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completely deterministic. There are an infinite number of configurations of the real system

which would be represented in the model by the same final representation, and each of these

real configurations should really lead to a different final state. The variance of these final states

within a given finite model representation has to be determined, and is the subject of extensive

mathematical and physical research. Distinct classes of solutions seem to exist in simplified

physical problems. These solutions depend on whether the problem is ergodic, i.e., whether it

gives rise to periodic, quasi-periodic, or non-periodic solutions [1191. Whether this mathemati-

cal classification bears corresponding physical significance has not been determined.

It is by no means clear that increased study and development of these mathematical,

expansion-based phenomenologies is the way to go. In addition to the problems described

above, there are other difficulties as well. The first of these involves modeling turbulent tran-

sients (bursts) and turbulence onset. In most physical systems, turbulence arises naturally as a

consequence of an unstable macroscopic flow configuration and dies out when the destabilizing

situation abates. As mentioned above, specific local evaluation of fluid dynamic stability criteria

should be a part of any reliable model, although it does not seem to be included in any of the

moment models. In fact, the description of turbulent shear flows in terms of a mean profile in

at least some flows (mixing layer and boundary layer) has been shown to be the result of a

superposition of nearly deterministic large-scale structures having random phases [1241. The

classic experiments by Roshko and others demonstrate this fact clearly [128,129].

Another aspect of these transient-vs-steady-state problems is shown in Fig. X.10. Typical

flow streamlines in both the steady state and the transient laminar computations of flow in a

simple two-dimensional combustor are illustrated. The lower panel shows realistic macroscopic

fluctuating eddies carrying pockets of relatively pure oxidizer to the top of the chamber and

relatively pure fuel to the bottom. Any phenomenological turbulence models based on the

steady state flow of the top panel cannot describe convection of pockets of pure fuel or oxidizer

into the far corners of the chamber, for it would require a flow with material crossing stream-

lines. Neither will diffusive approximations be able to get the pure fuel or oxidizer there.
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Therefore, suitably modified approaches to the modelling are required to correctly treat this

problem.

X.D.3. A Physically Motivated Phnnomenological Approach

An alternative approach to multi-equation and multi-moment methods involves actually

modelling the probability distribution function (PDF) based on certain physical processes ve

know occur. The models must also provide procedures for deriving the time-averaged fluid

quantities. Methods of this type have been developed and tested by a number of authors [143-

146]. Their hope is that by building some of the physics into the PDF, the computed mean

quantities will be less sensitive to those of its feature which are not known.

Spaldng's ESCIMO theory [1461 is one example of this type of model currently being

developed with more emphasis than most on following the reactive interfaces. Mixtures of

different composition form interleaved folds which are born, stretch and die as a function of

time. The gradients are smoothed and broadened by molecular diffusion. Only the direction

normal to the interface is considered, so multidimensional effects appear as compression and

dilation of the gradients in the one spatial dimension which is represented. The internal gra-

dients and structures of the folds are only driven by the macroscopic flow but not derived from

it or coupled directly to it. In terms of the reactive surface concepts introduced above, the

ESCIMO theory concentrates on the perpendicular diffusive mixing and associated detailed ,

kinetics where the reactive flow is laminar on the small scale. The effects of mutual interfer-

ence in adjacent folds of the surface are neglected and there is no way of knowing what the size

distribution is for these folds at their birth. What we have is a number of small-scale one-

dimensional laminar problems which must be related to the macroscopic flow. This has been

termed the "demography" problem.

We see, therefore, that the ESCIMO approach is a simplified ab initio model which can

teach us something about the local mixing and chemical kinetic aspects of turbulence as well as
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being the representational basis of a potentially useful phenomenological model. Studies of the

time-history of individual folds may include effects such as complex chemical reactions, molec-

ular diffusion, etc. This is one way to study localized mixing in the microscale under idealized

circumstances. The model is limited, however, in its predictive capability by those physical

processes which have not been included, as well a by the open-ended question of how the par-

cels interact with the macroscale. Detailed modelling calculations still require a parameterized,

coupled, dynamic model of the subcell turbulence. Such a model should be capable of

representing and predicting multiscale phenomena such as occur in instability cascade.

X.D.4. Local Spectral Dynamics

Suppose every computational fluid element has local subscale motions which must be

described simply and accurately. Further, suppose these local motions can be described in

important respects by a local spectrum of fluctuations. Then an efficient and flexible turbulence

model might be developed by modelling the local spectrum,

Ek I pVI, (X.2)

in each fluid element using just a few degrees of freedom. Here p is the mass density and VA is

the kih wavelength component of the fourier transform of the fluid velocity. We further

assume for now that only a scalar spectrum is needed to model the local motions and that the

region which has to be modelled is limited as shown in Fig. X. 1. For wavenumbers larger than

kd,, viscous dissipation, thermal conduction, and molecular diffusion effects dominate and the

fluctuation spectra should be predictable given the values at kd,. For wavenumbers smaller

than kceii, the macroscopic hydrodynamics equations resolve these scales explicitly.

In between kd,1 , and k,.eii, some form of discrete representation of the localized turbulence

shurt wavelength spectrum is needed. The best form has not yet been determined. In the

figure, three discrete values of the spectrum at kI, k2, and k 3 are shown breaking the turbulent

interactions regime into three finite width cells or bins. The optimal number of such cells must

also be determined. At least three bins are necessary to allow for tratisient instability onset,
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changing turbulent length scales, and multiscale phenomena. More bins will undoubtedly

improve flexibility and accuracy of the model. In earlier idealized tests of this approach on the

Kelvin-Helmholtz instability, it was necessary to use at least two bins per decade of characteris-

tic scale length.

To advance Ek,, Ek2, E3 , the localized spectral strengths at k1, k2, k3, a set of ordinary

differential equations is written down which are somewhat analogous to the coupled rate equa-

tions for chemical kinetics. For each macroscopic cell, there are a series of equations for the

form

dEk,- = Y (Qk,(vj) - Lk,(YJ)) (X.3)

whe,e QA, and Lk, are production and loss terms for spectral cell ki. The {Vj) refer to the par-

ticular processes which can act as production (Q) or loss (L) terms and they represent the

hydrodynamic channels for turbulent energy reapportionment, chemical reactions, diffusion

processes, etc. These source and sink terms couple the various wavelength bins in much the

same manner as specific chemical reactions or reaction types couple different chemical kinetic

species. All the conservation conditions on total momentum and energy in the spectrum apply

with the added complication of source and sink terms at both long and short wavelength.

Energy dissipated at short wavelengths appears as localized heat in the macroscopic energy

equation and as turbulent viscosity in the macroscopic momentum equation.

In this general approach attention is focussed on the interactions between var~ous local

coherent flow structures rather than on overall correlations. The simplifications ..rise from

treating the identifiable hydrodynamic channels as separate interactions with characteristic

transformations of the "turbulence" spectrum. By way of contrast, the more standard

configuration space and spectral space models (e.g Jeandel, Brison and Mathieu [1401) tend to

lump all the hydrodynamic channels together and treat the individual correlations instead. The

closure problem appears in this spectral dynamics appi'jach through the need to relate the
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evolving local spectrum to the macroscopic flow rather than the need to relate higher-order

correlations to known lower-order correlations.

In preliminary studies, the obvious anisotropy of some of the hydrodynamic channels will

be ignored, and it is hoped that the use of several spectra will not be necessary. Fully cali-

brated and theoretically understood parameterizations of the reactive surface area evolution as a

function of spectral structure will be needed if accurate chemical kinetics models are to be

included. By constructing, in effect, a systems model, the specific analytic and phenomenologi-

cal models developed to understand the reactive flow physics itself can be incorporated rather

directly. The works of Libby and Bray [147] and Williams [1481, for instance, appear more

readily adaptable to the local spectral dynamics formalism than to direct incorporation in more

standard models. Further, the complementary results of a complete set of ESCIMO-like

Lagrangian reactive flow calculations may also need to be folded in.

Certainly only a careful iuantitative analysis of the specific hydrodynamic channels and

their interactions can point the way to valid simplifications in this miserable modelling morass.

This analysis must provide a represention of the basic fluid instabilities as source and sink

terms, probably in terms of instability growth rates derived from separately performed ab initio

or microscopic calculations. Considerable success with a variant of this approach has been

achieved in a number of plasma physics problems where small-scale micro-instabilities affect

macroscopic transport [125,126,149-151]. A similar approach has been postulated for nonreac-

tive flow by Brodkey [1521. However, his source and sink terms did no' explicitly identify indi-

vidual hydrodynamic channels or a way of incorporating the effective boundary conditions of

the macroscopic gradients on the subscale quantities. Studies of the effect of chemical energy

release on the spectrum, Ek, have been made by Eschenroeder [153).

The goal of this local spectral dynamics approach is to use a combination of ab initio cal-

culations and analytical theory to provide insight into the form of the A and Lk functions.

This con plementary approach is appealling physically because it allows all the important aspects

144



NRL MEMORANDUM REPORT 4371

of the six criteria presented above to be met. The model may include the growth and decay of

the important hydrodynamic channels and thus potentially allows for onset and transient

phenomena. Chemical reactions may be included, at the very least through an enhancement of

the spectrum at wavelengths between kceii and kd,,. Since we clearly must accept a prediction

which is true only on average, the neglect of all but a few of the internal turbulent fluid degrees

of freedom in each cell ensures this and provides efficiency. Scaling is ensured through a

source term imposed on the equations at k,,,,. Thus the procedure sketched out above does, at

least in principle, meet the six conditions postulated earlier as necessary if not sufficient for a

reactive flow turbulence submodel. Undoubtedly many new approaches to representing and

then modelling small scale turbulence effects will be developed as well as modifications of the

more familiar methods.
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XI. CONCLUSION

This paper has presented an introduction to detailed modelling. We have tried to show

how detailed modelling is different from both empirical modelling, which is primarily curve

fitting to experimental data, and from phenomenological modelling, in which an equation is

proposed to model our intuition. However, by describing several flame and detonation calcula-

tions, we have shown that even the most detailed of detailed models usually contains empirical

' 1 or phenomenological components. Such simplified components are necessary because of large

disparities in the time or space scales we must represent. Because results obtained from a

detailed model may be more comprehensive than those from an analytic theory, they can be

used to bridge the gap between theory and experiment. From experimental observation and

approximate theoretical models we postulate quantitative physical laws which we expect an

effect to obey. These laws are then tested against reality by incorporating them in a detailed

model which makes quantitative predicitions for comparison with experimental measurements.

Thus perhaps the most fundamental use of detailed modelling is to test our understanding of

the controlling physical processes.

A computer simulation using a detailed model is similar to an experiment in that it does

not easily give the simple equations relating physical variables which an analytic theory may

provide. Instead, each calculation is a unique experiment preformed with one set from an

infinity of possible sets of geometric, boundary, and initial conditions. Although detailed

modelling may not directly provide the types of analytic relationships which guide our intuition

and allow us to make quick estimates, it gives us the flexibility to evaluate the importance of a

physical effect by.simply turning it off or on or changing its strength. These models may also

be used to test the range of validity of theoretical approximations. Any analytic results avail-

able are valuable in benchmarking the model. A series of tests which compare analytic results

to numerical simulations may calibrate the simulation before it is compared to experiments or

used for extrapolation. Conversely, a well-tested detailed model serves as a very useful means
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of calibrating unknown parameters and form factors in approximate theories and expressions.

Errors and confusion in modelling arise because the complex set of coupled, non-linear,

partial differential equations is not an .xact representation of the physical system. Consider, for

example, the use of input parameters such as chemical rates or diffusion coefficients. These

quantities, used as submodels in the detailed model, must be derived from more fundamental

theories, models or experiments. We have seen that they may not be known to any appreciable

accuracy and often their values are simply guesses. Or consider the geometry used in a calcula-

tion. We have seen that it is often one or two dimensions less than needed to completely

describe the real system. Potentially important multi-dimensional effects may then be either

crudely approximated or ignored.

However, we limit the representation with which we are dealing both because of cost and

computer constraints and because we can often learn a great deal about a system by studying a

limited representation of that system. Since the solutions obtained from detailed model calcula-

tions more closely approximate reality and have a greater range of validity than those obtained

from theoretical analyses, they may be used to test the accuracy of an approximate theory or.to

calibrate unknown parameters and form factors in these theories. Conversely, we have stressed

throughout this paper the need to validate numerical models by comparisons with experimental

data and analytical results. Only models whose range of validity is well-understood can be used

wi,h confidence for prediction and design.

In addition to errors inherent in the representation itself, there are many types of errors

which arise from inexact solution techniques. Large parts of this paper have been devoted to

describing methods of reducing or eliminating errors introduced by finite difference methods.

We have concentrated on finite difference methods because they are the most versatile and can

be made extremely accurate. Most of the difficulties described are associated with obtaining

adequate resolution. In modelling shocks, detonations, or flame propagation, time and space

scales of interest can span as many as ten orders of magnitude. Thus, to obtain adequate
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resolution at steep gradients, we have described a number of methods which rely on asymptotic

techniques or adaptive gridding.

Throughout this paper we have pointed to topics where further development of numerical

methods would be especially important for solving combustion problems. These include, for

example, faster, and yet accurate methods for integrating ordinary differential equations to

solve the chemical equations, more general Poisson solvers for multi-dimensional flame calcula-

tions, and more general adaptive gridding techniques, such as imbedded adaptive gridding.

Advances in the areas of numerical analysis listed above would be extremely useful, but

there are many problems in combustion for which the basic physics and chemistry are not well

characterized. Outstanding among these is turbulence, for which a general satisfactory frame-

work for its inclusion in hydrodynamics models has not been developed. Further challenges are

posed by the general research areas of radiation transport and heterogeneous processes such as

phase changes, droplet dynamics, and soot formation.

All of these phenomena will surely be modelled using many of the techniques we have

described. However, new insights into the physics and chemistry as well as new numericalI
methods will have to oe devised before the complete spectrum of reactive flow phenomena can

be dealt with anywhere near is well as phenomena in laminar gas phase combustion.
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Glossary of Symbols

The symbols defined below are those which are used in more than one main section (Roman

numeral I through XI) of this paper. They are defined in the text in the first section in which

they are used. Other symbols used in the paper, which are not defined below, are defined for

and used only in one section.

d Amplification factor in a finite difference method.

CS Speed of sound

Dj Thermal diffusion coefficient of species j.

Djk Molecular diffusion coefficient of species j through k.

E Total energy minus the heats of formation at 0* K.

' Total energy of the system.

hj Temperature dependent enthalpy of species j.

hoj Heat of formation of species j at 0* K.

H Total temnerature dependent enthalpy of the system.

i Index referring to spatial points (subscript).

i Index referring to scies (subscript).

k Index referring to species (subscript).

k8  Boltzmann's constant.

Lj Term representing loss of species j.

M Total number of species present.

Mj Mass of species j (amu).

n Index referring to timestep (superscript).

n, Number density of species j.

N Total number density.

P Pressure.
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Q Heat flux.

Qj Term representing production of species j.

Sj Source term for species j in diffusion velocity matrix.

t Time.

T (1) Temperature, (2) Transpose operation (superscript in a matrix).
v Fluid velocity.

Vj Diffusion velocity of species j.

v, Characteristic wave velocity

v Ratio of specific heats: Cr/Cv.

Internal energy.

71 Mixture viscosity coefficient

7j Viscosity coefficient for species j.

X Mixture thermal conductivity coefficient

X, Thermal conductivity coefficient of species j.

Vorticity.

p Mass density.

P Mass density of species j.
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A MODELLER'S NIGHTMARE

RATE CONSTANTS AT 300 K FOR
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Fig. 11.1 - Rate constant for the reaction HO + 03 - HO2 + 02 shown as a function of the year of its meas-
urement. Measurements are indicated by points, circles, daggers, and horizontal bars. Arrows on top or below
the bars indicate measurements which give upper and lower bounds. (Information provided by Dr David Gar-
vin of the U.S. National Bureau of Standards.)
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urement. Measurements are indicated by points, circles, daggers, and horizontal bars. Arrows on top or below
the bars indicate measurements which give upper and lower bounds. (information provided by Dr. David Oar-
yin of the U.S. National Bureau of Standards.)
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FINITE INTERVAL GIBBS EFFECT
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DISPLACEMENT -

Fin. 111.2 - illustration of the way in which the Gibb's errors appear in a calculation.

Grid points are marked by the black dots.
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SOURCE, SINK, COUPLING INTEGRATIONS
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Fig. 111.1 - Solutions for the source, sink, and coupling terms when y in Eq. (111.1) is negative. Note that t, e,
c, and i indicate the analytical, explicit, centered, and implicit solutions, respectively

173



NRL MEMORANDUM REPORT 4371

DIFFUSION AMPLIFICATION FACTORS
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Fig 11.3 Th amlifcaton actr a a uncionofk~x for various values of 8. The T E, C, and / refer to

the nalticl, xplcit ceterd, nd mplcitsolutions for the diffusion-like term, respectively.
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Fig. i1 5 - Comparison of foir types numerical solutions obtained for the propagation of a square wave The dots in-
dicate the values calculated by the methods listed on the left-hand side
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OSCILLATION DISPERSION RELATIONS
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Fig. IV I - Schematic diagram showing qualitatively the types of phase errors which may occur in asymptotic

soluions of the chemical rate equations Note the increased accuracy for long timesteps.
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Fig IV 2 - Schematic diagram showing thc temperature profiles for incident and
reflected shock waves The value Of T, and 7, are the maximum lengths of time for
heating fluid elements bchind thc incident and reflected shocks at temperatures T1 and
7,, respectively
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ENOUGH NUMERICAL DIFFUSION
FOR POSITIVITY: 1 1 ~=-

t=3dt

f ill,7/27 :::.1/27

t 12dt

QQ

-6x x=O dx 2dx 36x 4 6x
Fig. V.1 - A calculation which illustrates the numerical diffusion which arises when the

donor cell finite difference algorithm is us.,d
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ENOUGH NUMERICAL DIFFUSION
FOR POSITIVITY: 1 1 ~

t 3dt

Ejmji~1/27

t 2dt

t=O

1/

-dx xO d x 26x 3dx 4dx
Fig. V.1 - A calculation which illustrates the numerical diffusion which arises when the

donor cell finite difference algorithm is usad
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*ENOUGH NUMERICAL DIFFUSION12-

FOR STABILITY: V= E: 1

.22

t=36t

~.01

.12

t = 2dt

t = Osec

Fig. V.2 - A calculation which illustrates the loss of monotonicity which arises when
enough numerical diffusion is left in the calculation to maintain stability.
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Fig. VIII.2 - Comparisons of the results of solving the detonation oscillation problem
183,841 using four different numerical techniques.
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Radius m
Fig. VIIIL3 - Comparison of the self-similar solution to the spherical blast wave problem

derived by Taylor (941 to the numerical calculation by Phillips 192].
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Radius m
Fig. VIII.3 - Comparison of the self-similar solution to the spherical blast wave problem

derived by Taylor [94) to the numerical calculation by Phillips (921.
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Fig. VIII.5 - Same as VIllA, but for later times.
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Fig. VI1I.6 - Central pressure as a function of time for the decay of the splic, i%,t
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ORAN AND BORIS

REACTIVE SHOCK PROBLEM
INITIAL CONDITIONS

DIAPKRAGM

DRIVER GAS (He, N2, Ar) REACTIVE MIXTURE (H2, 02, DILUENT)

T= 300 'K T=3000 K
P>>1 atm p<< 1 atm

Fig. VIII.7 - Initial density, temperature, and pressure for the reactive shock calculation.
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Fig. VIII.8 - Calculated temperature as a function of distance after the shock has traveled 40 cm down the
tube. The dashed lines indicate results from the ideal solution. The position of the shock front and contact
discontinuity are noted by SF and CD, respectively.
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Fig. VIII.9 - Calculated mass density as a function of distance at the time

corresponding to Fig. VIII.9a.
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SYSTEM LENGTH, 50 cm.
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Fig. Vili.I I - Calculations of temperature as a function of time at 39 cri.

The shock is reflected at a rigid wall at 50 cm
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Fig. IX.1 - Profiles of temperature (A), atomic oxy'gen mass fraction (B), and
density (C), as a function of" position for a flame in 20% O3/O2,
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Fig. IX.2 - Position of the flamefront (A), flame velocity in inertial coordinate (B), and
fundamental burning velocity (C) as a function of time for the flame shown in Fig. lX.1.
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Fig. IM. - Comparisons of measured burning velocities [1081 as a function of the initial

ozone mole fraction to those calculated by Warnatz [981 and Heimerl and Coffee [971.
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Fig. IX.4 - Ratios of the values of the chemical rates and diffusion coefficients used by Heimerl and Coffee [971

to those used by Warnatz (98). Each ratio is indicated by the specific coefficient which is defined in the text.
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Fig. lXSa - Mole fraction of atomic oxygen as a function of position as predicted by Heimerl and Coffee [971 and Warnatz
198]. The three curves have been purposely off-set on ihe distance scale to show their differences in magnitude.
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Fig. IX.5b • - Temperature as a function of position for the cases shown in Fig. IX.a
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I~ Fig. IX 6 - Species densities as a function of position for an H2 - 02 flame 1781.
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Fig. IX.7 - Expansion of Fig. IX.6 in the region of the flame front. Peaks of OH, 0, H, H20 2 and HO2 and the max-
imum temperature gradient (AT max) are noted by arrows. The region around the flamefront which is finely gridded
has been marked at the bottom of the figure.

200



NRL MEMORANDUM REPORT 4s71

Vu/ m.s- 1

+

/ .5

10
/

Ii 0"

0

5 \.

3 0

00

X •
1

I x

0 0.2 0.4 0.6 0.8 H2

Fig. IX.8 - Comparison between calculated (solid line) and measured flame velocities (other symbols) as a
function of mole fraction of H2 in H2 - 02 - N2 flames (2980 K and a pressure of I bar in unburnt gas).
References to the specific measurements are given by Warnatz 198]. The numbers I through 5 refer to differvalues of the ratio R X(0 2)(X(0 2) + V142)), wheie X indicates a mole fraction. Key: I - R - 0.057,- R -0.125, 3-- R 0.21 (air),4 -R -0.40, 5- R - .
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Fig. IX.9 - Comparison of measured and calculated flame velocities for methane-air

flames at I atm as a function of equivalence ratio [991.
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Fig, IX.1 - Comparison of measured (solid line) and calculated (dashed line) species concentrations for a low pres-
sure method-air flame [1001 as a function of position (P - 0.1 atm, equivalence ratio - 0.77, and initial unburned
temperature - 300°K).
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Fig. lX.12 - Similarity solution parameters (characteristic radius, R~, nonlinear amplitude, A, central tempera-
ture, 7" (R - 0), and induction parameter, I ) as a function of time. The *'indicates the time for which the
model predicts ignition for a mixture of H12: 02: N)/2:1:10 at I atm and initially at 300*K.
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Fig. IX.13 - Comparison of solutions of central temperature as a function of time for the similarity solution
(dashed line) and a detailed simulation (solid line) for three values of energy deposited. The ' indicates the
time at which the similarity solution predicts ignition.
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Fig. IX.14 - Velocity vector and reactant density contour plots (C times l. x 10-, 2 x 10-', and S x 10'
seconds, from top to bottom, for the calculation of unsteady combustion in two connected, closed chambers
11021.
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Fig. IX.15 - Calculations of central temperan.ie as a function of time for a propagating flame in an enclosed
chamber. Pressure increases in the enclosed chamber cause all of the unburned gas to ignite at once at about
10-2 seconds. The results calculated usi- the one-dimensional and the two-dimensional models differ by
about 10% after this time.
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LOCALIZED SPECTRAL DYNAMICS
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Fig. X.1 - Schematic showing how localized spectral dynamics can describe reactive flow mlixing.
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Evolution of a Sheai Mixing Layer
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Fig. X.2 - Evolution of a shear mixing layer in a finely resolved two-dimensional
ab initio calculation of a two species compressible fluid.
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ROLE OF EXPiANSION IN TURBULENCE

reactions and heat releasedest

gradient

ACTIVE
Fig. X.3 - The active role of expansion in the turbulence of reactive flows.
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ROLE OF EXPANSION IN TURBULENCE

I 
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circulating flow from vorticity

I,

gradient PASSIVE
IFig. X.4 - The passive role of expansion in the turbulence of reactive flows.
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t=o ti

A B A, B
j 0

t .. REACTIVE SURFACE

DYNAMICS

A B

i Fig. X.S - Three stages during the early deformation of a reactive surface between two fluids A and B. At

t - 0 (upper left), the surface separating A and B is shown as flat and two-dimensional in a three-dimensional
; . volume of fluid. At later times tj (upper right) and t2 (lower left), the surface progressively deforms as the
~result of the local Lagran. ian motion of surface points shown as small arrows to indicate local direction of flow.
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I Reactive Interface Dynamics

ISpecies A Secies B ~ Species A S ecies B:--

Istretching interpenetration
Fig. X.6 - Interpenetration of two species A and B as influenced by local

reactive interface dynamics.
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Fig. X.7 - Two different cases for reactive interface area increase are shown. In the upper right a relatively
flat fluffy surface results from a turbulent velocity spectrum enhanced at short wavelengths where molecular
diffusion is strong. When diffusior is small and the velocity spectrum large at long wavelengths, smooth bulges
result as shown in the lower left.
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Ab Initio Simulation of Reactive Flow Mixing

t =_0.0 sec t= 0.3 sec

t =1.0 sec t 1.8 sec

00

0

density contour evolution of initial checkerboard
Fig. X.8 - Contour plots of density during a detailed two-dimensional reactive flow simulation designed to
show the effects of density differences on the generation of short wavelength turbulence and mixing.
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Ab lnitio Simulation of Reactive Flow Mixing

t=0.0 sec t 0.3 sec

t=1.0Osec t=1.8 sec

density surface evolution of initial checkerboard
Fig. X.9 - Plots of density as a function of x and y at four times for the

ab inito reactive flow mixing calculation of Fig. X.8.
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